Post-glacial rebound

A model of present-day mass change due to post-glacial rebound and the reloading of the ocean basins with seawater. Blue and purple areas indicate rising due to the removal of the ice sheets. Yellow and red areas indicate falling as mantle material moved away from these areas in order to supply the rising areas, and because of the collapse of the forebulges around the ice sheets.
This layered beach at Bathurst Inlet, Nunavut is an example of post-glacial rebound after the last Ice Age. Little to no tide helped to form its layer-cake look. Isostatic rebound is still underway here.

Post-glacial rebound (also called isostatic rebound or crustal rebound) is the rise of land masses after the removal of the huge weight of ice sheets during the last glacial period, which had caused isostatic depression. Post-glacial rebound and isostatic depression are phases of glacial isostasy (glacial isostatic adjustment, glacioisostasy), the deformation of the Earth's crust in response to changes in ice mass distribution.[1] The direct raising effects of post-glacial rebound are readily apparent in parts of Northern Eurasia, Northern America, Patagonia, and Antarctica. However, through the processes of ocean siphoning and continental levering, the effects of post-glacial rebound on sea level are felt globally far from the locations of current and former ice sheets.[2]

  1. ^ Milne, G.; Shennan, I. (2013). "Isostasy: Glaciation-Induced Sea-Level Change". In Elias, Scott A.; Mock, Cary J. (eds.). Encyclopedia of Quaternary Science. Vol. 3 (2nd ed.). Elsevier. pp. 452–459. doi:10.1016/B978-0-444-53643-3.00135-7. ISBN 978-0-444-53643-3.
  2. ^ Milne, G.A., and J.X. Mitrovica (2008) Searching for eustasy in deglacial sea-level histories. Quaternary Science Reviews. 27:2292–2302.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search