Pressure drop

Pressure drop (often abbreviated as "dP" or "ΔP")[1] is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through a conduit (such as a channel, pipe, or tube). This friction converts some of the fluid’s hydraulic energy to thermal energy (i.e., internal energy). Since the thermal energy cannot be converted back to hydraulic energy, the fluid experiences a drop in pressure, as is required by conservation of energy.[2]

The main determinants of resistance to fluid flow are fluid velocity through the pipe and fluid viscosity. Pressure drop increases proportionally to the frictional shear forces within the piping network. A piping network containing a high relative roughness rating as well as many pipe fittings and joints, tube convergence, divergence, turns, surface roughness, and other physical properties will affect the pressure drop. High flow velocities or high fluid viscosities result in a larger pressure drop across a pipe section, valve, or elbow joint. Low velocity will result in less (or no) pressure drop. The fluid may also be biphasic as in pneumatic conveying with a gas and a solid; in this case, the friction of the solid must also be taken into consideration for calculating the pressure drop.[3]

  1. ^ "Differential pressure (dp or dP)". US Nuclear Regulatory Commission. Retrieved 30 December 2022.
  2. ^ Hardee, Ray (13 April 2015). "Calculating Head Loss in a Pipeline". Pumps and Systems.
  3. ^ "Pneumatic transport pressure drop calculation - dilute phase - PowderProcess.net". www.powderprocess.net.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search