Schubert variety

In algebraic geometry, a Schubert variety is a certain subvariety of a Grassmannian, of -dimensional subspaces of a vector space , usually with singular points. Like the Grassmannian, it is a kind of moduli space, whose elements satisfy conditions giving lower bounds to the dimensions of the intersections of its elements , with the elements of a specified complete flag. Here may be a vector space over an arbitrary field, but most commonly this taken to be either the real or the complex numbers.

A typical example is the set of -dimensional subspaces of a 4-dimensional space that intersect a fixed (reference) 2-dimensional subspace nontrivially.

Over the real number field, this can be pictured in usual xyz-space as follows. Replacing subspaces with their corresponding projective spaces, and intersecting with an affine coordinate patch of , we obtain an open subset X° ⊂ X. This is isomorphic to the set of all lines L (not necessarily through the origin) which meet the x-axis. Each such line L corresponds to a point of X°, and continuously moving L in space (while keeping contact with the x-axis) corresponds to a curve in X°. Since there are three degrees of freedom in moving L (moving the point on the x-axis, rotating, and tilting), X is a three-dimensional real algebraic variety. However, when L is equal to the x-axis, it can be rotated or tilted around any point on the axis, and this excess of possible motions makes L a singular point of X.

More generally, a Schubert variety in is defined by specifying the minimal dimension of intersection of a -dimensional subspace with each of the spaces in a fixed reference complete flag , where . (In the example above, this would mean requiring certain intersections of the line L with the x-axis and the xy-plane.)

In even greater generality, given a semisimple algebraic group with a Borel subgroup and a standard parabolic subgroup , it is known that the homogeneous space , which is an example of a flag variety, consists of finitely many -orbits, which may be parametrized by certain elements of the Weyl group . The closure of the -orbit associated to an element is denoted and is called a Schubert variety in . The classical case corresponds to , with , the th maximal parabolic subgroup of , so that is the Grassmannian of -planes in .


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search