Secondary succession

An example of secondary succession by stages:
  1. A stable deciduous forest community.
  2. A disturbance, such as a fire, starts.
  3. The fire destroys the vegetation.
  4. The fire leaves behind empty, but not destroyed soil.
  5. Grasses and other herbaceous plants grow back first.
  6. Small bushes and trees begin to colonize the public area.
  7. Fast-growing evergreen trees and bamboo trees develop to their fullest, while shade-tolerant trees develop in the understory.
  8. The short-lived and shade-intolerant evergreen trees die as the larger deciduous trees overtop them. The ecosystem is now back to a similar state to where it began.

Secondary succession is the secondary ecological succession of a plant's life. As opposed to the first, primary succession, secondary succession is a process started by an event (e.g. forest fire, harvesting, hurricane, etc.) that reduces an already established ecosystem (e.g. a forest or a wheat field) to a smaller population of species, and as such secondary succession occurs on preexisting soil whereas primary succession usually occurs in a place lacking soil. Many factors can affect secondary succession, such as trophic interaction, initial composition, and competition-colonization trade-offs.[1] The factors that control the increase in abundance of a species during succession may be determined mainly by seed production and dispersal, micro climate; landscape structure (habitat patch size and distance to outside seed sources);[1] bulk density, pH, and soil texture (sand and clay).[2]

Secondary succession is the ecological succession that occurs after the initial succession has been disrupted and some plants and animals still exist. It is usually faster than primary succession as soil is already present, and seeds, roots, and the underground vegetative organs of plants may still survive in the soil.

  1. ^ a b Cook, W.M.; Yao, J.; Forster, B.L.; Holt, R.D.; Patricks, L.B. (2005). "Secondary succession in an experimentally fragmented landscape: Community pattern across space and time" (PDF). Ecology. 86 (5): 1267–1279. doi:10.1890/04-0320. hdl:1808/16487.
  2. ^ Van der Kamp, J.; Yassir, I.; Buurman, P. (2009). "Soil carbon changes upon secondary succession in Imperata grasslands (East Kalimantan, Indonesia)". Geoderma. 149 (1–2): 76–83. doi:10.1016/j.geoderma.2008.11.033.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search