![]() | This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (April 2022) |
The Selberg zeta-function was introduced by Atle Selberg (1956). It is analogous to the famous Riemann zeta function
where is the set of prime numbers. The Selberg zeta-function uses the lengths of simple closed geodesics instead of the prime numbers. If is a subgroup of SL(2,R), the associated Selberg zeta function is defined as follows,
or
where p runs over conjugacy classes of prime geodesics (equivalently, conjugacy classes of primitive hyperbolic elements of ), and N(p) denotes (equivalently, the square of the bigger eigenvalue of p).
For any hyperbolic surface of finite area there is an associated Selberg zeta-function; this function is a meromorphic function defined in the complex plane. The zeta function is defined in terms of the closed geodesics of the surface.
The zeros and poles of the Selberg zeta-function, Z(s), can be described in terms of spectral data of the surface.
The zeros are at the following points:
The zeta-function also has poles at , and can have zeros or poles at the points .
The Ihara zeta function is considered a p-adic (and a graph-theoretic) analogue of the Selberg zeta function.
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search