Siderite

Siderite
General
CategoryCarbonate mineral
Formula
(repeating unit)
FeCO3
IMA symbolSd[1]
Strunz classification5.AB.05
Dana classification14.01.01.03
Crystal systemTrigonal
Crystal classHexagonal scalenohedral (3m)
H-M symbol: (3 2/m)
Space groupR3c
Unit cella = 4.6916
c = 15.3796 [Å]; Z = 6
Identification
ColorPale yellow to tan, grey, brown, green, red, black and sometimes nearly colorless
Crystal habitTabular crystals, often curved; botryoidal to massive
TwinningLamellar uncommon on{0112}
CleavagePerfect on {0111}
FractureUneven to conchoidal
TenacityBrittle
Mohs scale hardness3.75–4.25
LusterVitreous, may be silky to pearly
StreakWhite
DiaphaneityTranslucent to subtranslucent
Specific gravity3.96
Optical propertiesUniaxial (−)
Refractive indexnω = 1.875
nε = 1.633
Birefringenceδ = 0.242
DispersionStrong
References[2][3][4]

Siderite is a mineral composed of iron(II) carbonate (FeCO3). Its name comes from the Ancient Greek word σίδηρος (sídēros), meaning "iron". A valuable iron ore, it consists of 48% iron and lacks sulfur and phosphorus. Zinc, magnesium, and manganese commonly substitute for the iron, resulting in the siderite-smithsonite, siderite-magnesite, and siderite-rhodochrosite solid solution series.[3]

Siderite has Mohs hardness of 3.75 to 4.25, a specific gravity of 3.96, a white streak and a vitreous lustre or pearly luster. Siderite is antiferromagnetic below its Néel temperature of 37 K (−236 °C) which can assist in its identification.[5]

It crystallizes in the trigonal crystal system, and are rhombohedral in shape, typically with curved and striated faces. It also occurs in masses. Color ranges from yellow to dark brown or black, the latter being due to the presence of manganese.

Siderite is commonly found in hydrothermal veins, and is associated with barite, fluorite, galena, and others. It is also a common diagenetic mineral in shales and sandstones, where it sometimes forms concretions, which can encase three-dimensionally preserved fossils.[6] In sedimentary rocks, siderite commonly forms at shallow burial depths and its elemental composition is often related to the depositional environment of the enclosing sediments.[7] In addition, a number of recent studies have used the oxygen isotopic composition of sphaerosiderite (a type associated with soils) as a proxy for the isotopic composition of meteoric water shortly after deposition.[8]

  1. ^ Warr, L. N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. ^ "Siderite". Handbook of Mineralogy: Borates, Carbonates, Sulfates (PDF). Tucson, Arizona: Mineral Data Publishing. 2003. ISBN 9780962209741. Archived from the original (PDF) on 13 March 2022. Retrieved 2022-11-30.
  3. ^ a b Siderite, Mindat.org, retrieved 2022-11-30
  4. ^ Siderite Mineral Data, WebMineral.com, retrieved 2022-11-30
  5. ^ Frederichs, T.; von Dobeneck, T.; Bleil, U.; Dekkers, M. J. (January 2003). "Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties". Physics and Chemistry of the Earth, Parts A/B/C. 28 (16–19): 669–679. Bibcode:2003PCE....28..669F. doi:10.1016/S1474-7065(03)00121-9.
  6. ^ Garwood, Russell; Dunlop, Jason A.; Sutton, Mark D. (2009). "High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids". Biology Letters. 5 (6): 841–844. doi:10.1098/rsbl.2009.0464. PMC 2828000. PMID 19656861.
  7. ^ Mozley, P. S. (1989). "Relation between depositional environment and the elemental composition of early diagenetic siderite". Geology. 17: 704–706.
  8. ^ Ludvigson, G. A.; Gonzalez, L. A.; Metzger, R. A.; Witzke, B. J.; Brenner, R. L.; Murillo, A. P.; White, T. S. (1998). "Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology". Geology. 26: 1039–1042.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search