Silicon nanowire

Schematic of silicon nanowire

Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium-ion batteries, thermoelectrics and sensors. Initial synthesis of SiNWs is often accompanied by thermal oxidation steps to yield structures of accurately tailored size and morphology.[1]

SiNWs have unique properties that are not seen in bulk (three-dimensional) silicon materials. These properties arise from an unusual quasi one-dimensional electronic structure and are the subject of research across numerous disciplines and applications. The reason that SiNWs are considered one of the most important one-dimensional materials is they could have a function as building blocks for nanoscale electronics assembled without the need for complex and costly fabrication facilities.[2] SiNWs are frequently studied towards applications including photovoltaics, nanowire batteries, thermoelectrics and non-volatile memory.[3]

  1. ^ Liu, M.; Peng, J.; et al. (2016). "Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires". Theoretical and Applied Mechanics Letters. 6 (5): 195–199. arXiv:1911.08908. doi:10.1016/j.taml.2016.08.002.
  2. ^ Yi, Cui; Charles M., Lieber (2001). "Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks". Science. 291 (5505): 851–853. Bibcode:2001Sci...291..851C. doi:10.1126/science.291.5505.851. PMID 11157160.
  3. ^ Mikolajick, Thomas; Heinzig, Andre; Trommer, Jens; et al. (2013). "Silicon nanowires–a versatile technology platform". Physica Status Solidi RRL. 7 (10): 793–799. Bibcode:2013PSSRR...7..793M. doi:10.1002/pssr.201307247. S2CID 93989192.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search