State-space models are applied in fields such as economics,[3] statistics,[4] computer science, electrical engineering,[5] and neuroscience.[6] In econometrics, for example, state-space models can be used to decompose a time series into trend and cycle, compose individual indicators into a composite index,[7] identify turning points of the business cycle, and estimate GDP using latent and unobserved time series.[8][9] Many applications rely on the Kalman Filter or a state observer to produce estimates of the current unknown state variables using their previous observations.[10][11]
^Stock, J.H.; Watson, M.W. (2016), "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics", Handbook of Macroeconomics, vol. 2, Elsevier, pp. 415–525, doi:10.1016/bs.hesmac.2016.04.002, ISBN978-0-444-59487-7
^Durbin, James; Koopman, Siem Jan (2012). Time series analysis by state space methods. Oxford University Press. ISBN978-0-19-964117-8. OCLC794591362.
^Roesser, R. (1975). "A discrete state-space model for linear image processing". IEEE Transactions on Automatic Control. 20 (1): 1–10. doi:10.1109/tac.1975.1100844. ISSN0018-9286.
^Harvey, Andrew C. (1990). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107049994