Stochastic universal sampling

SUS example

Stochastic universal sampling (SUS) is a selection technique used in evolutionary algorithms for selecting potentially useful solutions for recombination. It was introduced by James Baker.[1]

SUS is a development of fitness proportionate selection (FPS) which exhibits no bias and minimal spread. Where FPS chooses several solutions from the population by repeated random sampling, SUS uses a single random value to sample all of the solutions by choosing them at evenly spaced intervals. This gives weaker members of the population (according to their fitness) a chance to be chosen.

FPS can have bad performance when a member of the population has a really large fitness in comparison with other members. Using a comb-like ruler, SUS starts from a small random number, and chooses the next candidates from the rest of population remaining, not allowing the fittest members to saturate the candidate space.

  1. ^ Baker, James E. (1987). "Reducing Bias and Inefficiency in the Selection Algorithm". Proceedings of the Second International Conference on Genetic Algorithms and Their Application. Hillsdale, New Jersey: L. Erlbaum Associates: 14–21.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search