Stratovolcano

Mount Rainier, a 4,392 m (14,411 ft) stratovolcano, the highest point in the US state of Washington
Exposed internal structure of alternating layers of lava and pyroclastic rock in the eroded Broken Top stratovolcano in Oregon

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra.[1] Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and solidifies before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica (as in rhyolite, dacite, or andesite), with lesser amounts of less viscous mafic magma.[2] Extensive felsic lava flows are uncommon, but have traveled as far as 15 km (9 mi).[3]

Stratovolcanoes are sometimes called composite volcanoes because of their composite stratified structure, built up from sequential outpourings of erupted materials. They are among the most common types of volcanoes, in contrast to the less common shield volcanoes.[4] Two examples of stratovolcanoes famous for catastrophic eruptions are Krakatoa in Indonesia, which erupted in 1883, and Vesuvius in Italy, having erupted in 79; both eruptions claimed thousands of lives. In modern times, Mount St. Helens in Washington State, US, and Mount Pinatubo in the Philippines have erupted catastrophically, but with fewer deaths.

The existence of stratovolcanoes on other bodies of the Solar System has not been conclusively demonstrated.[5] One possible exception is the existence of some isolated massifs on Mars, for example the Zephyria Tholus.[6]

  1. ^ Public Domain This article incorporates public domain material from Principal Types of Volcanoes. United States Geological Survey. Retrieved 19 January 2009.
  2. ^ Carracedo, Juan Carlos; Troll, Valentin R., eds. (2013). Teide Volcano: Geology and Eruptions of a Highly Differentiated Oceanic Stratovolcano. Active Volcanoes of the World. Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-25892-3.
  3. ^ "Garibaldi volcanic belt: Garibaldi Lake volcanic field". Catalogue of Canadian volcanoes. Geological Survey of Canada. 1 April 2009. Archived from the original on 26 June 2009. Retrieved 27 June 2010.{{cite web}}: CS1 maint: unfit URL (link)
  4. ^ Schmincke, Hans-Ulrich (2003). Volcanism. Berlin: Springer. p. 71. ISBN 9783540436508.
  5. ^ Barlow, Nadine (2008). Mars : an introduction to its interior, surface and atmosphere. Cambridge, UK: Cambridge University Press. ISBN 9780521852265.
  6. ^ Stewart, Emily M.; Head, James W. (1 August 2001). "Ancient Martian volcanoes in the Aeolis region: New evidence from MOLA data". Journal of Geophysical Research. 106 (E8): 17505. Bibcode:2001JGR...10617505S. doi:10.1029/2000JE001322.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search