Subduction

Diagram of the geological process of subduction

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust.[1] Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.[2]

Subduction is possible because the cold oceanic lithosphere is slightly denser than the underlying asthenosphere, the hot, ductile layer in the upper mantle underlying the cold, rigid lithosphere. Once initiated, stable subduction is driven mostly by the negative buoyancy of the dense subducting lithosphere. The slab sinks into the mantle largely under its weight.[3]

Earthquakes are common along the subduction zone, and fluids released by the subducting plate trigger volcanism in the overriding plate. If the subducting plate sinks at a shallow angle, the overriding plate develops a belt of deformation characterized by crustal thickening, mountain building, and metamorphism. Subduction at a steeper angle is characterized by the formation of back-arc basins.[4]

  1. ^ Stern, Robert J. (2002), "Subduction zones", Reviews of Geophysics, 40 (4): 1012, Bibcode:2002RvGeo..40.1012S, doi:10.1029/2001RG000108, S2CID 247695067
  2. ^ Defant, M. J. (1998). Voyage of Discovery: From the Big Bang to the Ice Age. Mancorp. p. 325. ISBN 978-0-931541-61-2.
  3. ^ Stern 2002, p. 3.
  4. ^ Stern 2002.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search