Supernova neutrinos

Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion.[1] A massive star collapses at the end of its life, emitting on the order of 1058 neutrinos and antineutrinos in all lepton flavors.[2] The luminosity of different neutrino and antineutrino species are roughly the same.[3] They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds.[4][5] The typical supernova neutrino energies are 10 to 20 MeV.[6] Supernovae[a] are considered the strongest and most frequent source of cosmic neutrinos in the MeV energy range.

Since neutrinos are generated in the core of a supernova, they play a crucial role in the star's collapse and explosion.[7] Neutrino heating is believed to be a critical factor in supernova explosions.[1] Therefore, observation of neutrinos from supernova provides detailed information about core collapse and the explosion mechanism.[8] Further, neutrinos undergoing collective flavor conversions in a supernova's dense interior offers opportunities to study neutrino-neutrino interactions.[9] The only supernova neutrino event detected so far is SN 1987A.[b] Nevertheless, with current detector sensitivities, it is expected that thousands of neutrino events from a galactic core-collapse supernova would be observed.[11] The next generation of experiments are designed to be sensitive to neutrinos from supernova explosions as far as Andromeda or beyond.[12] The observation of supernova will broaden our understanding of various astrophysical and particle physics phenomena.[13] Further, coincident detection of supernova neutrino in different experiments would provide an early alarm to astronomers about a supernova.[14]

  1. ^ a b Cite error: The named reference :10 was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference :9 was invoked but never defined (see the help page).
  3. ^ Cuesta Soria, Clara; On behalf of the DUNE Collaboration (2021-04-15). "Core-Collapse Supernove Burst Neutrinos in DUNE". Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020). Vol. 390. SISSA Medialab. p. 590. doi:10.22323/1.390.0590.
  4. ^ Scholberg, Kate (2011-12-01). "Supernova neutrino detection". Nuclear Physics B - Proceedings Supplements. The Proceedings of the 22nd International Conference on Neutrino Physics and Astrophysics. 221: 248–253. arXiv:1205.6003. Bibcode:2011NuPhS.221..248S. doi:10.1016/j.nuclphysbps.2011.09.012. ISSN 0920-5632.
  5. ^ Cite error: The named reference :11 was invoked but never defined (see the help page).
  6. ^ Athar, M. Sajjad (2020). The physics of neutrino interactions. S. K. Singh. Cambridge, United Kingdom. ISBN 978-1-108-77383-6. OCLC 1153342277.{{cite book}}: CS1 maint: location missing publisher (link)
  7. ^ Scholberg, Kate (2012-11-01). "Supernova Neutrino Detection". Annual Review of Nuclear and Particle Science. 62: 81–103. arXiv:1205.6003. Bibcode:2012ARNPS..62...81S. doi:10.1146/annurev-nucl-102711-095006. ISSN 0163-8998.
  8. ^ Cite error: The named reference :5 was invoked but never defined (see the help page).
  9. ^ Abbar, Sajad; Duan, Huaiyu (2018-08-16). "Fast neutrino flavor conversion: Roles of dense matter and spectrum crossing". Physical Review D. 98 (4): 043014. arXiv:1712.07013. Bibcode:2018PhRvD..98d3014A. doi:10.1103/PhysRevD.98.043014.
  10. ^ Agnes, P.; Albergo, S.; Albuquerque, I. F. M.; Alexander, T.; Alici, A.; Alton, A. K.; Amaudruz, P.; Arcelli, S.; Ave, M.; Avetissov, I. Ch.; Avetisov, R. I. (2020-11-01). "Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos". Journal of Cosmology and Astroparticle Physics. 2011 (3): arXiv:2011.07819. arXiv:2011.07819. Bibcode:2021JCAP...03..043D. doi:10.1088/1475-7516/2021/03/043. S2CID 226965179.
  11. ^ Cite error: The named reference :13 was invoked but never defined (see the help page).
  12. ^ Cite error: The named reference :14 was invoked but never defined (see the help page).
  13. ^ Cite error: The named reference :15 was invoked but never defined (see the help page).
  14. ^ Cite error: The named reference :8 was invoked but never defined (see the help page).


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search