Symmetry of second derivatives

In mathematics, the symmetry of second derivatives (also called the equality of mixed partials) is the fact that exchanging the order of partial derivatives of a multivariate function

does not change the result if some continuity conditions are satisfied (see below); that is, the second-order partial derivatives satisfy the identities

In other words, the matrix of the second-order partial derivatives, known as the Hessian matrix, is a symmetric matrix.

Sufficient conditions for the symmetry to hold are given by Schwarz's theorem, also called Clairaut's theorem or Young's theorem.[1][2]

In the context of partial differential equations, it is called the Schwarz integrability condition.

  1. ^ "Young's Theorem" (PDF). University of California Berkeley. Archived from the original (PDF) on 2006-05-18. Retrieved 2015-01-02.
  2. ^ Allen 1964, pp. 300–305.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search