Thermite

A thermite mixture using iron (III) oxide

Thermite (/ˈθɜːrmt/)[1] is a pyrotechnic composition of metal powder and metal oxide. When ignited by heat or chemical reaction, thermite undergoes an exothermic reduction-oxidation (redox) reaction. Most varieties are not explosive, but can create brief bursts of heat and high temperature in a small area. Its form of action is similar to that of other fuel-oxidizer mixtures, such as black powder.

Thermites have diverse compositions. Fuels include aluminium, magnesium, titanium, zinc, silicon, and boron. Aluminium is common because of its high boiling point and low cost. Oxidizers include bismuth(III) oxide, boron(III) oxide, silicon(IV) oxide, chromium(III) oxide, manganese(IV) oxide, iron(III) oxide, iron(II,III) oxide, copper(II) oxide, and lead(II,IV) oxide.[2] In a thermochemical survey comprising twenty-five metals and thirty-two metal oxides, 288 out of 800 binary combinations were characterized by adiabatic temperatures greater than 2000 K.[3] Combinations like these, which possess the thermodynamic potential to produce very high temperatures, are either already known to be reactive or are plausible thermitic systems.

The reaction, also called the Goldschmidt process, is used for thermite welding, often used to join railway tracks. Thermites have also been used in metal refining, disabling munitions, and in incendiary weapons. Some thermite-like mixtures are used as pyrotechnic initiators in fireworks.

  1. ^ Wells, John C. (1990). Longman pronunciation dictionary. Harlow, England: Longman. p. 715. ISBN 978-0-582-05383-0. entry "thermite"
  2. ^ Kosanke, K; Kosanke, B. J; Von Maltitz, I; Sturman, B; Shimizu, T; Wilson, M. A; Kubota, N; Jennings-White, C; Chapman, D (December 2004). Pyrotechnic Chemistry — Google Books. Journal of Pyrotechnics, Incorporated. ISBN 978-1-889526-15-7. Retrieved 15 September 2009.
  3. ^ Shaw, Anthony Peter Gordon (5 June 2020). Thermitic Thermodynamics: A Computational Survey and Comprehensive Interpretation of Over 800 Combinations of Metals, Metalloids, and Oxides. Boca Raton: CRC Press. p. 33. doi:10.1201/9781351056625. ISBN 978-1-351-05662-5.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search