Toxin-antitoxin system

(A) The vertical gene transfer of a toxin-antitoxin system. (B) Horizontal gene transfer of a toxin-antitoxin system. PSK stands for post-segregational killing and TA represents a locus encoding a toxin and an antitoxin.[1]

A toxin-antitoxin system consists of a "toxin" and a corresponding "antitoxin", usually encoded by closely linked genes. The toxin is usually a protein while the antitoxin can be a protein or an RNA. Toxin-antitoxin systems are widely distributed in prokaryotes, and organisms often have them in multiple copies.[2][3] When these systems are contained on plasmids – transferable genetic elements – they ensure that only the daughter cells that inherit the plasmid survive after cell division. If the plasmid is absent in a daughter cell, the unstable antitoxin is degraded and the stable toxic protein kills the new cell; this is known as 'post-segregational killing' (PSK).[4][5]

Toxin-antitoxin systems are typically classified according to how the antitoxin neutralises the toxin. In a type I toxin-antitoxin system, the translation of messenger RNA (mRNA) that encodes the toxin is inhibited by the binding of a small non-coding RNA antitoxin that binds the toxin mRNA. The toxic protein in a type II system is inhibited post-translationally by the binding of an antitoxin protein. Type III toxin-antitoxin systems consist of a small RNA that binds directly to the toxin protein and inhibits its activity.[6] There are also types IV-VI, which are less common.[7] Toxin-antitoxin genes are often inherited through horizontal gene transfer[8][9] and are associated with pathogenic bacteria, having been found on plasmids conferring antibiotic resistance and virulence.[1]

Chromosomal toxin-antitoxin systems also exist, some of which are thought to perform cell functions such as responding to stresses, causing cell cycle arrest and bringing about programmed cell death.[1][10] In evolutionary terms, toxin-antitoxin systems can be considered selfish DNA in that the purpose of the systems are to replicate, regardless of whether they benefit the host organism or not. Some have proposed adaptive theories to explain the evolution of toxin-antitoxin systems; for example, chromosomal toxin-antitoxin systems could have evolved to prevent the inheritance of large deletions of the host genome.[11] Toxin-antitoxin systems have several biotechnological applications, such as maintaining plasmids in cell lines, targets for antibiotics, and as positive selection vectors.[12]

  1. ^ a b c Van Melderen L, Saavedra De Bast M (March 2009). Rosenberg SM (ed.). "Bacterial toxin-antitoxin systems: more than selfish entities?". PLOS Genetics. 5 (3): e1000437. doi:10.1371/journal.pgen.1000437. PMC 2654758. PMID 19325885.
  2. ^ Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G (June 2010). "Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families". Nucleic Acids Research. 38 (11): 3743–59. doi:10.1093/nar/gkq054. PMC 2887945. PMID 20156992.
  3. ^ Gerdes K, Wagner EG (April 2007). "RNA antitoxins". Current Opinion in Microbiology. 10 (2): 117–24. doi:10.1016/j.mib.2007.03.003. PMID 17376733.
  4. ^ Gerdes K (February 2000). "Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress". Journal of Bacteriology. 182 (3): 561–72. doi:10.1128/JB.182.3.561-572.2000. PMC 94316. PMID 10633087.
  5. ^ Faridani OR, Nikravesh A, Pandey DP, Gerdes K, Good L (2006). "Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli". Nucleic Acids Research. 34 (20): 5915–22. doi:10.1093/nar/gkl750. PMC 1635323. PMID 17065468.
  6. ^ Labrie SJ, Samson JE, Moineau S (May 2010). "Bacteriophage resistance mechanisms". Nature Reviews. Microbiology. 8 (5): 317–27. doi:10.1038/nrmicro2315. PMID 20348932. S2CID 205497795.
  7. ^ Page R, Peti W (April 2016). "Toxin-antitoxin systems in bacterial growth arrest and persistence". Nature Chemical Biology. 12 (4): 208–14. doi:10.1038/nchembio.2044. PMID 26991085.
  8. ^ Mine N, Guglielmini J, Wilbaux M, Van Melderen L (April 2009). "The decay of the chromosomally encoded ccdO157 toxin-antitoxin system in the Escherichia coli species". Genetics. 181 (4): 1557–66. doi:10.1534/genetics.108.095190. PMC 2666520. PMID 19189956.
  9. ^ Ramisetty BC, Santhosh RS (February 2016). "Horizontal gene transfer of chromosomal Type II toxin-antitoxin systems of Escherichia coli". FEMS Microbiology Letters. 363 (3): fnv238. doi:10.1093/femsle/fnv238. PMID 26667220.
  10. ^ Hayes F (September 2003). "Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest". Science. 301 (5639): 1496–9. Bibcode:2003Sci...301.1496H. doi:10.1126/science.1088157. PMID 12970556. S2CID 10028255.
  11. ^ Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D (March 2003). "Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae". Genome Research. 13 (3): 428–42. doi:10.1101/gr.617103. PMC 430272. PMID 12618374.
  12. ^ Stieber D, Gabant P, Szpirer C (September 2008). "The art of selective killing: plasmid toxin/antitoxin systems and their technological applications". BioTechniques. 45 (3): 344–6. doi:10.2144/000112955. PMID 18778262.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search