Trypsin inhibitor

A trypsin inhibitor (TI) is a protein and a type of serine protease inhibitor (serpin) that reduces the biological activity of trypsin by controlling the activation and catalytic reactions of proteins.[1] Trypsin is an enzyme involved in the breakdown of many different proteins, primarily as part of digestion in humans and other animals such as monogastrics and young ruminants. Serpins – including trypsin inhibitors – are irreversible and suicide substrate-like inhibitors.[2][3]

It destructively alters trypsin thereby rendering it unavailable to bind with proteins for the digestion process.[4] As a result, protease inhibitors that interfere with digestion activity have an antinutritional effect. Therefore, trypsin inhibitors are considered an anti-nutritional factor or ANF.[5] Additionally, trypsin inhibitor partially interferes with chymotrypsin function.

Trypsinogen is an inactive form of trypsin, its inactive form ensures protein aspects of the body, such as the pancreas and muscles, are not broken down. It is formed in the pancreas and activated to trypsin with enteropeptidase[6] Chymotrypsinogen is the inactive form of chymotrypsin and has similar functions as trypsin.

The presence of trypsin inhibitor has been found to result in delayed growth as well as metabolic and digestive diseases.[7] Additionally, pancreatic hypertrophy is a common occurrence with trypsin inhibitor consumption[8] The presence of trypsin inhibitor in a product reduces the protein efficiency and therefore results in the consumers body not being able to efficiently and fully utilize the protein.[9]

  1. ^ "Trypsin Inhibitors". Sigma-Aldrich.
  2. ^ Cohen, Maja; Davydov, Olga; Fluhr, Robert (2019-02-05). "Plant serpin protease inhibitors: specificity and duality of function". Journal of Experimental Botany. 70 (7). Society for Experimental Biology (OUP): 2077–2085. doi:10.1093/jxb/ery460. ISSN 0022-0957. PMID 30721992.
  3. ^ Silverman, Gary A.; Bird, Phillip I.; Carrell, Robin W.; Church, Frank C.; Coughlin, Paul B.; Gettins, Peter G.W.; Irving, James A; Lomas, David A.; Luke, Cliff J.; Moyer, Richard W.; Pemberton, Philip A.; Remold-O'Donnell, Eileen; Salvesen, Guy S.; Travis, James; Whisstock, James C. (2001). "The Serpins Are an Expanding Superfamily of Structurally Similar but Functionally Diverse Proteins". Journal of Biological Chemistry. 276 (36). American Society for Biochemistry and Molecular Biology (Elsevier): 33293–33296. doi:10.1074/jbc.r100016200. ISSN 0021-9258. PMID 11435447. S2CID 18684515.
  4. ^ Farady, Christopher J.; Craik, Charles S. (2010-11-04). "Mechanisms of Macromolecular Protease Inhibitors". ChemBioChem. 11 (17). Chemistry Europe (Wiley): 2341–2346. doi:10.1002/cbic.201000442. ISSN 1439-4227. PMC 4150018. PMID 21053238. NIHMSID 336639.
  5. ^ Aviles-Gaxiola, S., Chuck-Hernandez, C., and Serna Saldivar, S.O (2018). "Inactivation methods of trypsin inhibitor in legumes: a review". Journal of Food Science. 83 (1): 17–29. doi:10.1111/1750-3841.13985. PMID 29210451.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Hirota, M., Ohmuraya, M., and Baba, H. (2006). "The role of trypsin, trypsin inhibitor and trypsin receptor in the onset and aggravation of pancreatitis". Journal of Gastroenterology. 41 (9): 832–836. doi:10.1007/s00535-006-1874-2. PMID 17048046. S2CID 19643108.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Coscueta, Pintado, Pico, Knobel, Boschetti, Malpiede, and Nerli (2017). "Continuous method to determine the trypsin inhibitor activity in soybean flour". Food Chemistry. 214: 156–161. doi:10.1016/j.foodchem.2016.07.056. hdl:11336/65435. PMID 27507460.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Hwang, Foard, Wei. "A Soybean Trypsin Inhibitor". The Journal of Biological Chemistry. 252: 1099–1101. doi:10.1016/S0021-9258(19)75211-9.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Klomklao, Benjakul, Kishimura, Chaijan (2011). "Extraction, purification and properties of trypsin inhibitor from Thai mung bean (Vigna radiata (L.) R. Wilczek)". Food Chemistry. 129 (4): 1348–1354. doi:10.1016/j.foodchem.2011.05.029.{{cite journal}}: CS1 maint: multiple names: authors list (link)

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search