Unilamellar liposome

A unilamellar liposome is a spherical liposome, a vesicle, bounded by a single bilayer of an amphiphilic lipid or a mixture of such lipids, containing aqueous solution inside the chamber. Unilamellar liposomes are used to study biological systems and to mimic cell membranes, and are classified into three groups based on their size: small unilamellar liposomes/vesicles (SUVs) that with a size range of 20–100 nm, large unilamellar liposomes/vesicles (LUVs) with a size range of 100–1000 nm and giant unilamellar liposomes/vesicles (GUVs) with a size range of 1–200 μm.[1] GUVs are mostly used as models for biological membranes in research work.[2] Animal cells are 10–30 μm and plant cells are typically 10–100 μm. Even smaller cell organelles such as mitochondria are typically 1–2 μm. Therefore, a proper model should account for the size of the specimen being studied.[1] In addition, the size of vesicles dictates their membrane curvature which is an important factor in studying fusion proteins. SUVs have a higher membrane curvature and vesicles with high membrane curvature can promote membrane fusion faster than vesicles with lower membrane curvature such as GUVs.[3]

The composition and characteristics of the cell membrane varies in different cells (plant cells, mammalian cells, bacterial cells, etc). In a membrane bilayer, often the composition of the phospholipids is different between the inner and outer leaflets. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and sphingomyelin are some of the most common lipids most animal cell membranes. These lipids are widely different in charge, length, and saturation state. The presence of unsaturated bonds (double bonds) in lipids for example, creates a kink in acyl chains which further changes the lipid packing and results in a looser packing.[4][5] Therefore, the composition and sizes of the unilamellar liposomes must be chosen carefully based on the subject of the study.

Each lipid bilayer structure is comparable to lamellar phase lipid organization in biological membranes, in general. In contrast, multilamellar liposomes (MLVs), consist of many concentric amphiphilic lipid bilayers analogous to onion layers, and MLVs may be of variable sizes up to several micrometers.

  1. ^ a b Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K (November 2018). "Liposomes and polymersomes: a comparative review towards cell mimicking". Chemical Society Reviews. 47 (23): 8572–8610. doi:10.1039/C8CS00162F. hdl:21.11116/0000-0002-1554-8. PMID 30177983.
  2. ^ Wesołowska O, Michalak K, Maniewska J, Hendrich AB (2009). "Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems". Acta Biochimica Polonica. 56 (1): 33–9. doi:10.18388/abp.2009_2514. PMID 19287805.
  3. ^ Tareste D, Shen J, Melia TJ, Rothman JE (February 2008). "SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes". Proceedings of the National Academy of Sciences of the United States of America. 105 (7): 2380–5. Bibcode:2008PNAS..105.2380T. doi:10.1073/pnas.0712125105. PMC 2268145. PMID 18268324.
  4. ^ Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). "The Lipid Bilayer". Molecular Biology of the Cell (4th ed.).
  5. ^ Weijers RN (September 2012). "Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus". Current Diabetes Reviews. 8 (5): 390–400. doi:10.2174/157339912802083531. PMC 3474953. PMID 22698081.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search