Vanillin

Vanillin
Skeletal formula of a vanillin minor tautomer
Skeletal formula of a vanillin minor tautomer
Spacefill model of a vanillin minor tautomer
Spacefill model of a vanillin minor tautomer
Names
Preferred IUPAC name
4-Hydroxy-3-methoxybenzaldehyde
Other names
Vanillin[1]
Methyl vanillin[1]
Vanillic aldehyde[2]
Identifiers
3D model (JSmol)
3DMet
472792
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.060 Edit this at Wikidata
EC Number
  • 204-465-2
3596
KEGG
MeSH vanillin
RTECS number
  • YW5775000
UNII
  • InChI=1S/C8H8O3/c1-11-8-4-6(5-9)2-3-7(8)10/h2-5,8H,1H3 ☒N
    Key: MWOOGOJBHIARFG-UHFFFAOYSA-N ☒N
  • InChI=1/C8H8O3/c1-11-8-4-6(5-9)2-3-7(8)10/h2-5,10H,1H3
    Key: MWOOGOJBHIARFG-UHFFFAOYAS
  • c1(C=O)cc(OC)c(O)cc1
Properties
C8H8O3
Molar mass 152.149 g·mol−1
Appearance White solid
Odor Vanilla, sweet, balsamic, pleasant
Density 1.056 g/cm3[3]
Melting point 81 °C (178 °F; 354 K)[3]
Boiling point 285 °C (545 °F; 558 K)[3]
10 g/L
log P 1.208
Vapor pressure >1 Pa
Acidity (pKa) 7.781
Basicity (pKb) 6.216
Structure
Monoclinic
Thermochemistry
−3.828 MJ/mol
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H302, H317, H319
P280, P305+P351+P338
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Flash point 147 °C (297 °F; 420 K)
Safety data sheet (SDS) ICSC 1740
Related compounds
Related compounds
Anisaldehyde
Apocynin
Eugenol
Phenol
Vanillyl alcohol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Vanillin is an organic compound with the molecular formula C8H8O3. It is a phenolic aldehyde. Its functional groups include aldehyde, hydroxyl, and ether. It is the primary component of the extract of the vanilla bean. Synthetic vanillin is now used more often than natural vanilla extract as a flavoring in foods, beverages, and pharmaceuticals.

Vanillin and ethylvanillin are used by the food industry; ethylvanillin is more expensive, but has a stronger note. It differs from vanillin by having an ethoxy group (−O−CH2CH3) instead of a methoxy group (−O−CH3).

Natural vanilla extract is a mixture of several hundred different compounds in addition to vanillin. Artificial vanilla flavoring is often a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, synthetic preparation of its predominant component has long been of interest. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol (4-allyl-2-methoxyphenol). Today, artificial vanillin is made either from guaiacol or lignin.

Lignin-based artificial vanilla flavoring is alleged to have a richer flavor profile than that from guiacol-based artificial vanilla; the difference is due to the presence of acetovanillone, a minor component in the lignin-derived product that is not found in vanillin synthesized from guaiacol.[4]

  1. ^ a b Field, Simon Quellen. "Vanillin". sci-toys.com.
  2. ^ CID 1183 from PubChem.
  3. ^ a b c Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 3.310. ISBN 978-1-4987-5429-3.
  4. ^ According to Esposito 1997, blind taste-testing panels cannot distinguish between the flavors of synthetic vanillin from lignin and those from guaicol, but can distinguish the odors of these two types of synthetic vanilla extracts. Guaiacol vanillin, adulterated with acetovanillone, has an odor indistinguishable from lignin vanillin.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search