Water model

A water model is defined by its geometry, together with other parameters such as the atomic charges and Lennard-Jones parameters.

In computational chemistry, a water model is used to simulate and thermodynamically calculate water clusters, liquid water, and aqueous solutions with explicit solvent. The models are determined from quantum mechanics, molecular mechanics, experimental results, and these combinations. To imitate a specific nature of molecules, many types of models have been developed. In general, these can be classified by the following three points; (i) the number of interaction points called site, (ii) whether the model is rigid or flexible, (iii) whether the model includes polarization effects.

An alternative to the explicit water models is to use an implicit solvation model, also termed a continuum model, an example of which would be the COSMO solvation model or the polarizable continuum model (PCM) or a hybrid solvation model.[1]

  1. ^ Skyner RE, McDonagh JL, Groom CR, van Mourik T, Mitchell JB (March 2015). "A review of methods for the calculation of solution free energies and the modelling of systems in solution" (PDF). Physical Chemistry Chemical Physics. 17 (9): 6174–91. Bibcode:2015PCCP...17.6174S. doi:10.1039/C5CP00288E. PMID 25660403.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search