Gaz parfait

Cycles de Carnot pour un gaz parfait de Laplace monoatomique dans des diagrammes Volume-Pression (V,P) et Entropie-Température (S,T). Parce que les lignes isothermes et adiabatiques sont équidistantes au sens de la température absolue et de l'entropie, tous les losanges curvilignes élémentaires ont même aire. La mesure de cette aire est égale au travail que fournit le gaz quand son point représentatif parcourt les cycles entourant ces surfaces dans le sens horaire.

Le gaz parfait est un modèle thermodynamique décrivant le comportement des gaz réels à basse pression.

Ce modèle a été développé du milieu du XVIIe siècle au milieu du XVIIIe siècle et formalisé au XIXe siècle. Il est fondé sur l'observation expérimentale selon laquelle tous les gaz tendent vers ce comportement à pression suffisamment basse, quelle que soit la nature chimique du gaz, ce qu'exprime la loi d'Avogadro, énoncée en 1811 : la relation entre la pression, le volume et la température est, dans ces conditions, indépendante de la nature du gaz. Cette propriété s'explique par le fait que lorsque la pression est faible, les molécules de gaz sont suffisamment éloignées les unes des autres pour que l'on puisse négliger les interactions électrostatiques qui dépendent, elles, de la nature du gaz (molécules plus ou moins polaires). De nombreux gaz réels vérifient avec une excellente approximation le modèle du gaz parfait dans les conditions normales. C'est le cas des gaz principaux de l'air, le diazote N2 et le dioxygène O2.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search