Granulocyte neutrophile

Deux neutrophiles à 4 et 5 lobes nucléaires, entourés de nombreux globules rouges

Les granulocytes neutrophiles ou polynucléaires neutrophiles (PNN) (ou simplement « les neutrophiles ») sont des cellules sanguines . Ce sont des leucocytes ou globule blanc qui ont un rôle majeur dans le système immunitaire. Les neutrophiles constituent le type cellulaire le plus abondant dans le sang humain. Ils sont exclusivement produits dans la moelle osseuse en très grand nombre, environ 100 milliards par jour. Dans des conditions normales , après la fin d'un processus de formation qui dure environ 6 jours, les neutrophiles entrent dans la circulation, migrent vers les tissus, où ils remplissent leurs fonctions, et sont finalement éliminés par les macrophages, le tout en une journée. Les neutrophiles sont les premières cellules du système immunitaire à réagir[1]. Elles patrouillent constamment dans l’organisme à la recherche de signes d’infections microbiennes. En cas d'infection, ces cellules réagissent rapidement pour piéger et tuer les agents pathogènes envahisseurs. Trois fonctions antimicrobiennes principales sont reconnues aux neutrophiles : la phagocytose, la dégranulation et la libération de matière nucléaire sous forme de pièges extracellulaires à ADN (neutrophil extracellular traps ou NET). Ces fonctions étaient considérées, jusqu'à récemment, comme le seul objectif des neutrophiles. Cependant, les recherches actuelles montrent que les neutrophiles sont des cellules complexes transcriptionnellement actives[2] qui produisent des cytokines[2], modulent l'activité des cellules voisines et contribuent à la résolution de l’inflammation[3], régulent les macrophages pour les réponses immunitaires à long terme[4], participent activement à plusieurs maladies, dont le cancer (Tumor Associated Neutrophil ou TAN)[5], et jouent même un rôle dans le système immunitaire inné à mémoire[6].

  1. (en) Tanya N. Mayadas, Xavier Cullere et Clifford A. Lowell, « The Multifaceted Functions of Neutrophils », Annual Review of Pathology: Mechanisms of Disease, vol. 9, no 1,‎ , p. 181–218 (ISSN 1553-4006 et 1553-4014, PMID 24050624, PMCID PMC4277181, DOI 10.1146/annurev-pathol-020712-164023, lire en ligne, consulté le )
  2. a et b (en) Cristina Tecchio et Marco A. Cassatella, « Neutrophil-derived chemokines on the road to immunity », Seminars in Immunology, vol. 28, no 2,‎ , p. 119–128 (PMID 27151246, PMCID PMC7129466, DOI 10.1016/j.smim.2016.04.003, lire en ligne, consulté le )
  3. (en) Mallary C. Greenlee‐Wacker, « Clearance of apoptotic neutrophils and resolution of inflammation », Immunological Reviews, vol. 273, no 1,‎ , p. 357–370 (ISSN 0105-2896 et 1600-065X, PMID 27558346, PMCID PMC5000862, DOI 10.1111/imr.12453, lire en ligne, consulté le )
  4. (en) Fei Chen, Wenhui Wu, Ariel Millman et Joshua F Craft, « Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion », Nature Immunology, vol. 15, no 10,‎ , p. 938–946 (ISSN 1529-2908 et 1529-2916, PMID 25173346, PMCID PMC4479254, DOI 10.1038/ni.2984, lire en ligne, consulté le )
  5. (en) Eileen Uribe-Querol et Carlos Rosales, « Neutrophils in Cancer: Two Sides of the Same Coin », Journal of Immunology Research, vol. 2015,‎ , p. 1–21 (ISSN 2314-8861 et 2314-7156, PMID 26819959, PMCID PMC4706937, DOI 10.1155/2015/983698, lire en ligne, consulté le )
  6. (en) Mihai G. Netea, Leo A. B. Joosten, Eicke Latz et Kingston H. G. Mills, « Trained immunity: A program of innate immune memory in health and disease », Science, vol. 352, no 6284,‎ (ISSN 0036-8075 et 1095-9203, PMID 27102489, PMCID PMC5087274, DOI 10.1126/science.aaf1098, lire en ligne, consulté le )

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search