Anidride vanadica

Anidride vanadica
Nome IUPAC
pentossido di divanadio
Nomi alternativi
ossido di vanadio(V), anidride vanadica
Caratteristiche generali
Formula bruta o molecolareV2O5
Massa molecolare (u)181,88 g/mol
Aspettosolido giallo
Numero CAS1314-62-1
Numero EINECS215-239-8
PubChem14814
SMILES
O=[V](=O)O[V](=O)=O
Proprietà chimico-fisiche
Densità (g/cm3, in c.s.)3,36 (20 °C)
Solubilità in acqua(20 °C) appena solubile
Temperatura di fusione690 °C (963 K)
Temperatura di ebollizione1.750 °C (~2.023 K) (decomposizione)
Indicazioni di sicurezza
Simboli di rischio chimico
tossicità acuta pericoloso per l'ambiente tossico a lungo termine
pericolo
Frasi H300 - 310 - 332 - 341 - 361 - 372 - 335 - 411
Consigli P260 - 301+310 - 302+350 - 361 - 405 - 501 [1][2]

L'anidride vanadica (o ossido di vanadio(V) o pentossido di divanadio) nota anche come vanadia,[3][4] è il composto chimico di formula V2O5. Alternativamente nota come pentossido di vanadio, questo solido giallo-arancio è il più importante composto del vanadio.[5] Per riscaldamento perde ossigeno in modo reversibile. Per questa caratteristica l'anidride vanadica catalizza molte reazioni di ossidazione; quella utilizzata su più larga scala è l'ossidazione del diossido di zolfo (SO2) per la produzione di acido solforico (H2SO4). È un composto tossico, leggermente solubile in acqua, a differenza della maggior parte degli ossidi dei metalli di transizione che sono insolubili. L'anidride vanadica è un ossido anfotero, e spesso reagisce come ossidante. In natura l'anidride vanadica si trova nel minerale shcherbinaite; molto raro, lo si ritrova solo in alcune fumarole.

  1. ^ scheda del pentossido di divanadio su IFA-GESTIS Archiviato il 16 ottobre 2019 in Internet Archive.
  2. ^ Smaltire in accordo con le leggi vigenti.
  3. ^ (EN) Xin-Ping Wu e Xue-Qing Gong, Unique Electronic and Structural Effects in Vanadia/Ceria-Catalyzed Reactions, in Journal of the American Chemical Society, vol. 137, n. 41, 21 ottobre 2015, pp. 13228–13231, DOI:10.1021/jacs.5b07939. URL consultato l'8 marzo 2022.
  4. ^ (EN) Nan-Yu ToPsøE, Torben Slabiak e Bjerne S. Clausen, Influence of water on the reactivity of vanadia/titania for catalytic reduction of NOx, in Journal of Catalysis, vol. 134, n. 2, 1992-04, pp. 742–746, DOI:10.1016/0021-9517(92)90358-O. URL consultato l'8 marzo 2022.
  5. ^ (EN) Greenwood, N.N. e A. Earnshaw, Chemistry of the Elements, 2ª ed., Oxford, Butterworth-Heinemann, 1997, ISBN 0-7506-3365-4.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search