Meccanismo di Brout-Englert-Higgs

Il meccanismo di Brout-Englert-Higgs, più noto semplicemente come meccanismo di Higgs, proposto su un'idea di Philip Anderson, è il meccanismo teorico che conferisce massa ai bosoni di gauge deboli W e Z[1] e, nella sua accezione più generale, anche ai fermioni, cioè a tutte le particelle elementari massive (ad eccezione del neutrino). Si può considerare generato da un caso elementare di condensazione tachionica di un campo scalare complesso detto campo di Higgs (di cui uno dei quanti è il bosone di Higgs), che innesca una rottura spontanea di simmetria.

Validato nel 2012 dalla rilevazione sperimentale del bosone di Higgs, il suo schema teorico, in grado di spiegare l'origine della massa delle particelle elementari senza "rompere" la simmetria di gauge, fu pubblicato quasi simultaneamente nel 1964 da tre gruppi indipendenti: da Robert Brout e François Englert,[2] da Peter Higgs,[3] e da Gerald Guralnik, Carl Richard Hagen e Tom Kibble;[4][5][6] per questo motivo esso è attribuito a tutti questi autori.[7][8][9][10]

Per la sua elaborazione Peter Higgs e François Englert sono stati insigniti del premio Nobel per la fisica nel 2013.

  1. ^ G. Bernardi, M. Carena, and T. Junk: "Higgs bosons: theory and searches", Reviews of Particle Data Group: Hypothetical particles and Concepts, 2007, http://pdg.lbl.gov/2008/reviews/higgs_s055.pdf
  2. ^ Englert, F. e Brout, R., Broken symmetry and the mass of gauge vector mesons, in Physical Review Letters, vol. 13, n. 9, 1964, pp. 321–23, Bibcode:1964PhRvL..13..321E, DOI:10.1103/PhysRevLett.13.321.
  3. ^ Peter W. Higgs, Broken symmetries and the masses of gauge bosons, in Physical Review Letters, vol. 13, n. 16, 1964, pp. 508–09, Bibcode:1964PhRvL..13..508H, DOI:10.1103/PhysRevLett.13.508.
  4. ^ Guralnik, G.S., Hagen, C.R. e Kibble, T.W.B., Global conservation laws and massless particles, in Physical Review Letters, vol. 13, n. 20, 1964, pp. 585–87, Bibcode:1964PhRvL..13..585G, DOI:10.1103/PhysRevLett.13.585.
  5. ^ Guralnik, Gerald S., The History of the Guralnik, Hagen, and Kibble development of the theory of spontaneous symmetry breaking and gauge particles, in International Journal of Modern Physics, A24, n. 14, 2009, pp. 2601–2627, Bibcode:2009IJMPA..24.2601G, DOI:10.1142/S0217751X09045431, arXiv:0907.3466.
  6. ^ Tom W. B. Kibble, History of Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism, in Scholarpedia, vol. 4, n. 1, 9 gennaio 2009, pp. 8741, Bibcode:2009SchpJ...4.8741K, DOI:10.4249/scholarpedia.8741.
  7. ^ Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism, su Scholarpedia. URL consultato il 16 giugno 2012.
  8. ^ G.Z. Liu e G. Cheng, Extension of the Anderson–Higgs mechanism, in Physical Review B, vol. 65, n. 13, 2002, p. 132513, Bibcode:2002PhRvB..65m2513L, DOI:10.1103/PhysRevB.65.132513, arXiv:cond-mat/0106070.
  9. ^ H. Matsumoto, N.J. Papastamatiou, H. Umezawa e G. Vitiello, Dynamical rearrangement in the Anderson–Higgs–Kibble mechanism, in Nuclear Physics B, vol. 97, n. 1, 1975, pp. 61–89, Bibcode:1975NuPhB..97...61M, DOI:10.1016/0550-3213(75)90215-1.
  10. ^ Frank Close, The Infinity Puzzle: Quantum field theory and the hunt for an orderly universe, Oxford, UK, Oxford University Press, 2011, ISBN 978-0-19-959350-7.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search