Eletroforese

A eletroforese é uma técnica de separação que se baseia no princípio de migração de íons em um campo elétrico. Constitui uma técnica laboratorial importante e em amplo crescimento, atualização e pedidos de patentes[1], pois permite a separação analítica de moléculas sintéticas e biológicas, podendo segregar até moléculas praticamente iguais como são os tipos de ácidos de 18 carbonos presentes no azeite de oliva[2][3]. O princípio da técnica é a possibilidade de segregar analitos durante a migração de moléculas conforme sua carga elétrica , tamanhos, e conformidade espacial que adquirem conforme o eletrólito tamponado no qual as amostras serão postas e analisadas. A utilização da eletroforese para a separação de proteínas foi descrita pela primeira vez pelo bioquímico Arne Tiselius, em 1937, com a chamada eletroforese de fronteira móvel. Todavia, o método implementado por Tiselius era realizado inteiramente em solução, o que poderia gerar a mistura de proteínas em migração. Assim, suportes sólidos tais como papel filtro e celulose foram adicionados à técnica e permitiram a separação mais adequada das moléculas. De acordo com as leis da eletrostática, a força elétrica Felétrica, sobre um íon de carga q em um campo elétrico de força E é expresso em:

Felétrica= q E

A migração eletroforética do íon através da solução sofre oposição da força de atrito ou também chamada de atrito:

Ffricção= vf

V= velocidade de migração

f= coeficiente de atrito

O coeficiente de atrito é uma medida importante, pois representa o atrito que a solução exerce sobre o íon em movimento e algumas particularidades do íon tais como tamanho, forma, estado de solvatação bem como a viscosidade da solução impactam o coeficiente de atrito e assim, a migração do íon.

Em um campo elétrico constante, as forças que atuam sobre o íon irão se contrabalancear, de modo que cada íon de uma determinada solução movimenta-se com velocidade constante:

qE=vf

A mobilidade eletroforética de um íon (mobilidade iônica, ou µ) também pode ser definida pela equação abaixo:

µ =  v/E  =  q/f

No entanto, na prática a equação acima apenas aplica-se a íons em diluições infinitas diante de solventes não condutores. Por exemplo, em uma solução aquosa, as proteínas são envolvidas por uma nuvem de íons opostos, gerando um campo elétrico adicional.

  1. Color electrophoretic displays using same polarity reversing address pulse (em inglês), 26 de maio de 2017, consultado em 18 de novembro de 2019 
  2. Gómez-Caravaca, Ana M.; Maggio, Rubén M.; Cerretani, Lorenzo (24 de março de 2016). «Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review». Analytica Chimica Acta. 913: 1–21. ISSN 0003-2670. doi:10.1016/j.aca.2016.01.025 
  3. Ballus, Cristiano Augusto; Meinhart, Adriana Dillenburg; de Souza Campos, Francisco Alberto; Bruns, Roy Edward; Godoy, Helena Teixeira (1 de março de 2014). «Doehlert design-desirability function multi-criteria optimal separation of 17 phenolic compounds from extra-virgin olive oil by capillary zone electrophoresis». Food Chemistry. 146: 558–568. ISSN 1873-7072. PMID 24176381. doi:10.1016/j.foodchem.2013.09.102 

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search