Eletromagnetismo

As interações eletromagnéticas são responsáveis pelos filamentos brilhantes neste globo de plasma

Eletromagnetismo, na física, é uma interação que ocorre entre partículas com carga elétrica por meio de campos eletromagnéticos. A força eletromagnética é uma das quatro forças fundamentais da natureza. É a força dominante nas interações de átomos e moléculas. O eletromagnetismo pode ser pensado como uma combinação de eletrostática e magnetismo, dois fenômenos distintos, mas intimamente interligados. As forças eletromagnéticas ocorrem entre quaisquer duas partículas carregadas, causando uma atração entre partículas com cargas opostas e repulsão entre partículas com a mesma carga, enquanto o magnetismo é uma interação que ocorre exclusivamente entre partículas carregadas em movimento relativo. Esses dois efeitos se combinam para criar campos eletromagnéticos nas proximidades de partículas carregadas, que podem acelerar outras partículas carregadas por meio da força de Lorentz. Em alta energia, a força fraca e a força eletromagnética são unificadas como uma única força eletrofraca.

A força eletromagnética é responsável por muitos dos fenômenos químicos e físicos observados na vida cotidiana. A atração eletrostática entre os núcleos atômicos e seus elétrons mantém os átomos juntos. As forças elétricas também permitem que diferentes átomos se combinem em moléculas, incluindo as macromoléculas, como as proteínas que formam a base da vida. Enquanto isso, as interações magnéticas entre os momentos magnéticos de spin [en] e momento angular dos elétrons também desempenham um papel na reatividade química; tais relações são estudadas na química de spin [en]. O eletromagnetismo também desempenha um papel crucial na tecnologia moderna: produção, transformação e distribuição de energia elétrica; produção e detecção de luz, calor e som; fibra ótica e comunicação sem fio, sensores; computação; eletrólise; galvanoplastia; e motores e atuadores mecânicos.

O eletromagnetismo tem sido estudado desde os tempos antigos. Muitas civilizações antigas, incluindo os gregos e os maias, criaram teorias abrangentes para explicar raios, eletricidade estática e a atração entre pedaços magnetizados de minério de ferro. No entanto, não foi até o final do século XVIII que os cientistas começaram a desenvolver uma base matemática para entender a natureza das interações eletromagnéticas. Nos séculos XVIII e XIX, cientistas e matemáticos proeminentes como Coulomb, Gauss e Faraday desenvolveram leis homônimas que ajudaram a explicar a formação e a interação dos campos eletromagnéticos. Este processo culminou na década de 1860 com a descoberta das equações de Maxwell, um conjunto de quatro equações diferenciais parciais que fornecem uma descrição completa dos campos eletromagnéticos clássicos. Além de fornecer uma base matemática sólida para as relações entre eletricidade e magnetismo que os cientistas vêm explorando há séculos, as equações de Maxwell também preveem a existência de ondas eletromagnéticas autossustentáveis. Maxwell postulou que tais ondas constituem a luz visível, o que mais tarde se provou verdadeiro. De fato, raios gama, raios X, radiação ultravioleta, visível, infravermelha, micro-ondas e ondas de rádio foram todos determinados como sendo radiação eletromagnética diferindo apenas em sua faixa de frequências.

Na era moderna, os cientistas continuaram a refinar o teorema do eletromagnetismo para levar em conta os efeitos da física moderna, incluindo a mecânica quântica e a relatividade. De fato, as implicações teóricas do eletromagnetismo, particularmente o estabelecimento da velocidade da luz com base nas propriedades do "meio" de propagação (permeabilidade e permissividade), ajudaram a inspirar a teoria da relatividade especial de Einstein em 1905. Enquanto isso, o campo da eletrodinâmica quântica (E.D.Q.) [a] modificou as equações de Maxwell para serem consistentes com a natureza quantizada da matéria. Na eletrodinâmica quântica (E.D.Q.[a]), o campo eletromagnético é expresso em termos de partículas discretas conhecidas como fótons, que também são os quanta físicos da luz. Hoje, existem muitos problemas no eletromagnetismo que permanecem sem solução, como a existência de monopolos magnéticos e o mecanismo pelo qual alguns organismos podem sentir campos elétricos e magnéticos.
Erro de citação: Existem etiquetas <ref> para um grupo chamado "lower-alpha", mas não foi encontrada nenhuma etiqueta <references group="lower-alpha"/> correspondente


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search