Spin

 Nota: Para outros significados, veja Spin (desambiguação).

Na mecânica quântica o termo spin ("giro", em inglês ) associa-se, sem rigor, às possíveis orientações que partículas subatômicas carregadas, como o próton e o elétron, e alguns núcleos atômicos podem apresentar quando imersas em um campo magnético.

Embora o termo tenha surgido da ideia de que os elétrons "giravam" em torno de si mesmos, e embora geralmente associado à ideia de momento magnético das partículas uma vez que partículas carregadas, quando em movimento de rotação, da mesma forma que uma volta de fio percorrido por uma corrente elétrica, produzem campos magnéticos, esta descrição não é adequada para os nêutrons, que não possuem carga elétrica; também não é capaz de explicar valores de spin observados em certos núcleos atômicos, a exemplo para o U235. Nestes casos, o termo spin é encarado simplesmente como um quarto número quântico, necessário à definição dos estados quânticos destas partículas quando em estados discretos de energia em sistemas confinados, a exemplo nos orbitais em um átomo ou nos estados de energia em um gás de férmions.

O termo spin em mecânica quântica liga-se ao vetor momento angular intrínseco de uma partícula e às diferentes orientações (quânticas) deste no espaço, embora o termo seja muitas vezes incorretamente atrelado não ao momento angular intrínseco mas ao momento magnético intrínseco das partículas, por razões experimentais. Os vetores momentos angular e momento magnético intrínsecos de uma partícula são acoplados através de um fator giromagnético que depende da carga e da espécie de partícula, e uma partícula que tenha carga e spin (angular) não nulos terá um momento magnético não nulo. Experimentalmente o momento magnético é muito mais acessível do que o momento angular em si em virtude da interação deste com corpos magnéticos e eletromagnéticos, e o momento angular intrínseco (spin) de partículas carregadas, acaba sendo inferido a partir de seu momento magnético intrínseco.

O spin é considerado hoje uma entidade matemática que estabelece qual dentre as estatísticas disponíveis, a citar: a estatística de Fermi-Dirac para férmions (partículas com spin semi-inteiro), a estatística de Maxwell–Boltzmann (para partículas clássicas não interagentes) e a estatística de Bose-Einstein para bósons (partículas com spin inteiro) deve ser utilizada para a correta descrição termodinâmica dos entes físicos em questão quando no âmbito da mecânica quântica. Estabelece também os detalhes da aplicação da estatística correta por definir o número máximo de partículas em cada estado energético disponível: para férmions, 2 partículas no caso de spin (elétrons na eletrosfera, nos orbitais de um átomo, a exemplo), 4 para spin , 6 para spin ... , para bósons com spin inteiros e infinitas partículas por estado disponível. Associa-se diretamente ao momento angular intrínseco das partículas, sendo necessário à descrição desta grandeza e portanto caracteriza-se não só como uma entidade matemática, mas também como uma entidade física indispensável à descrição dos Sistemas Quânticos.

O spin não possui uma interpretação clássica, ou seja, é um fenômeno estritamente quântico, e sua associação com o movimento de rotação das partículas sobre seu eixo - uma visão clássica - deixa muito a desejar.

Existe uma relação entre o spin de Dirac e o experimento de Stern-Gerlach onde há uma interconexão entre teoria e experimento na física quântica, destacando a natureza quantizada do spin das partículas.

Esses conceitos estão profundamente interligados, no qual, a teoria do spin de Dirac oferece uma explicação teórica robusta para a existência do spin, enquanto o experimento de Stern Gerlach valida essa teoria, demonstrando experimentalmente a quantização do spin das partículas.

Essa relação entre teoria e experimento é fundamental para nossa compreensão do comportamento quântico das partículas. Assim, a relação entre o spin de Dirac e o experimento de Stern-Gerlach reside na teoria que fundamenta a existência do spin descrita pela equação de Dirac na teoria quântica de campos (Dirac) e na demonstração experimental da quantização do spin momento angular intrínseco das partículas mostrando que ele pode assumir apenas valores discretos em direções específicas (Stern-Gerlach). Ambos os conceitos se conectam na compreensão do comportamento quântico fundamental das partículas com spin. [1]

  1. Zettili, Nouredine (22 de janeiro de 2009). Quantum Mechanics: Concepts and Applications (em inglês). [S.l.]: John Wiley & Sons 

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search