Teoria de Lie

Em termos gerais, a Teoria de Lie é uma ferramenta para estudar equações diferenciais, funções especiais e perturbação especial[1] e é um mapa da álgebra de Lie de um grupo de Lie para o grupo que permite recuperar a estrutura do grupo local a partir da álgebra de Lie,[2] utilizada em muitas áreas da matemática pura[3] e aplicada e física matemática.[4]

Na matemática, o investigador Sophus Lie iniciou linhas de estudos envolvendo integração de equações diferenciais, grupos de transformação e contato de esferas que passaram a ser chamadas de Teoria de Lie.[5] Por exemplo, o último assunto é geometria da esfera de Lie. Este artigo aborda os grupos de transformação, que é uma das áreas da matemática, e foi desenvolvido por Wilhelm Killing e Élie Cartan.

O fundamento da Teoria de Lie é o mapa exponencial que relaciona as álgebras de Lie com os grupos de Lie, que é chamado de correspondência de grupo de Lie-álgebra. O assunto é parte da geometria diferencial, uma vez que os grupos de Lie são coletores diferenciáveis. Os grupos de Lie evoluem para fora da identidade (1) e os vetores tangentes para subgrupos de um parâmetro geram a álgebra de Lie. A estrutura de um grupo de Lie está implícita em sua álgebra e a estrutura da Álgebra de Lie é expressa por sistemas de raiz e dados raiz.

A teoria de Lie tem sido particularmente útil na física matemática, uma vez que descreve importantes grupos físicos como o grupo galileu, o grupo Lorentz e o grupo Poincaré.

  1. Belinfante, Johan G. F; Kolman, Bernard (1989). A Survey of Lie Groups and Lie Algebra with Applications and Computational Methods (em inglês). 87. revisada 2 ed. [S.l.]: Society for Industrial and Applied Mathematics. p. 6–14. 164 páginas. ISBN 9780898712438 
  2. Granja, Ángel; Hermida, José Ángel; Verschoren, Alain (2001). Ring Theory and Algebraic Geometry (em inglês). 221. [S.l.]: CRC Press. 362 páginas. ISBN 9780203907962 
  3. «What is Pure Mathematics?». University of Waterloo 
  4. M Geck, A Kleshchev e G Röhrle (2009). «Programme Theme». The Isaac Newton Institute for Mathematical Sciences 
  5. "Lie’s lasting achievements are the great theories he brought into existence. However, these theories – transformation groups, integration of differential equations, the geometry of contact – did not arise in a vacuum. They were preceded by particular results of a more limited scope, which pointed the way to more general theories that followed. The line-sphere correspondence is surely an example of this phenomenon: It so clearly sets the stage for Lie’s subsequent work on contact transformations and symmetry groups." R. Milson (2000) "An Overview of Lie’s line-sphere correspondence", pp 1–10 of The Geometric Study of Differential Equations, J.A. Leslie & T.P. Robart editors, American Mathematical Society ISBN 0-8218-2964-5 , quotation pp 8,9

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search