Themenmodellierung ist eine Methode des maschinellen Lernens, die verwendet wird, um Themen in einem Textkorpus zu identifizieren und zu klassifizieren.[1] Sie verwendet statistische Methoden, um die Häufigkeit von Wörtern in Bezug auf bestimmte Themen zu analysieren und Muster zu erkennen. Das Ergebnis ist eine Darstellung des Textkorpus in Form von Themen, die als Gruppe von Wörtern definiert sind, die häufig zusammen auftreten. Es wird oft in der Textanalyse, der Informationssuche und der Dokumentenklassifizierung verwendet.
Im Allgemeinen können Themenmodelle in zwei Klassen eingeteilt werden: probabilistische und nicht-probabilistische Modelle.[2] Nicht-probabilistische Modelle funktionieren über einen algebraischen Matrixfaktorisierungsansatz und sind die älteren Modelle der beiden Klassen. Die probabilistischen Modelle wurden entwickelt, um die Ergebnisse der nicht-probabilistschen Modelle zu verbessern, indem durch Verwendung generativer Modellansätze ein Wahrscheinlichkeitssinn hinzugefügt wurde.[1]
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search