Fusion mittels magnetischen Einschlusses

Heißes Plasma im Magnetfeld eines Tokamaks
Fusionsforscher Thomas Klinger erklärt im Gespräch mit Holger Klein die Unterschiede zwischen Tokamak und Stellarator.[1]

Fusion mittels magnetischen Einschlusses ist der heute meistverfolgte Entwicklungsweg zur angestrebten technischen Gewinnung von elektrischer Energie aus der Kernfusion. Konzepte, kommerziell verwertbare elektrische Leistung mit einem auf magnetischem Einschluss beruhenden Reaktor zu erzeugen, bezeichnet man auch als Magnetische Fusionsenergie, kurz MFE. Allgemein wird der Weg zur Fusionsenergiegewinnung durch magnetischen Einschluss als weiter fortgeschritten und vielversprechender erachtet als die ebenfalls untersuchte Trägheitsfusion.

Bei den heute konkret verfolgten Projekten der Fusion von leichteren Atomkernen zu schwereren werden die Wasserstoff-Isotope Deuterium und Tritium verwendet, die sich dabei in Helium-4 verwandeln (siehe auch Kernfusionsreaktor). Eine einzelne Fusionsreaktion erfolgt, wenn sich ein Deuterium- und ein Tritiumkern sehr nahekommen. Das ist wegen der gegenseitigen elektrostatischen Abstoßung der positiv geladenen Kerne nur mit sehr hoher kinetischer Energie der Reaktionspartner im Bereich von 10 bis 20 keV erreichbar, was Temperaturen von etwa 100–250 Millionen Grad Celsius entspricht. Bei diesen Temperaturen sind Atomkerne und Elektronen getrennt voneinander und bilden ein Plasma.

Ein solches Plasma lässt sich nicht in materielle Gefäße einschließen, da es bei Berührung mit den kalten Wänden sofort so stark abkühlen würde, dass der Plasmazustand beendet wird. Eine Möglichkeit, ein so heißes Plasma einzuschließen, sind geeignet geformte Magnetfelder. Ihre Einwirkung (Lorentzkraft) auf die sich bewegenden, geladenen Plasmateilchen kann diese von der Gefäßwand fernhalten. Betrachtet man das Plasma in seinem magnetischen Gefäß als ein Fluid, dann wird sein nach außen gerichteter Druck durch den nach innen gerichteten Magnetfelddruck (eine formale Rechengröße, nicht anschaulich wie mechanischer Druck aufzufassen) kompensiert. Der notwendige Plasmadruck der Größenordnung 1 bar konnte in den bisherigen Experimenten sekunden- bis minutenlang aufrechterhalten werden.

Aus der Vielfalt möglicher Magnetfeldanordnungen haben sich zwei Konzepte mit toroidaler Geometrie als am meisten erfolgversprechend herauskristallisiert: der Tokamak und der Stellarator. Die größten dieser Experimente sind

  • der Tokamak JET (in Betrieb seit 1983), mit dem kurzzeitig bereits Fusionsleistung im Megawatt-Maßstab erzeugt wurde,
  • das Heliotron LHD (seit 1998 in Betrieb),
  • der Stellarator Wendelstein 7-X (in Betrieb seit 2015[2]), der ein stabiles Plasma mit fusionsrelevanten Parametern für 30 Minuten aufrechterhalten soll,
  • der Tokamak ITER (Bau begonnen 2006, Fertigstellung nicht vor 2035[3]), mit dem erstmals Fusionsleistung „netto“ (also den Heizleistungsbedarf übersteigend) erzeugt werden soll.

Alle bisherigen Forschungsbemühungen sind darauf gerichtet, im genannten Temperaturbereich längere Zeit stabile Plasmen zu erzeugen. Dafür wurde – außer in einigen wenigen Versuchen in den Anlagen TFTR (Tokamak Fusion Test Reactor, USA) und JET – noch kein Deuterium-Tritium-Gemisch, sondern gewöhnlicher Wasserstoff oder in einigen Fällen reines Deuterium verwendet.

  1. Resonator-Podcast der Helmholtz-Gemeinschaft: Tokamak und Stellarator (Folge 30, 25. April 2015)
  2. http://www.ipp.mpg.de/de/aktuelles/presse/pi/2015/12_15
  3. Haushaltskontrollausschuss des EU-Parlaments: Report on discharge in respect of the implementation of the budget of the European Joint Undertaking for ITER and the Development of Fusion Energy for the financial year 2020. März 2022.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search