Laser

Dieser Artikel wurde in die Qualitätssicherung der Redaktion Physik eingetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.

Laser [ˈlɛɪzər], auch [ˈleːzər] oder [ˈlaːzər] (Akronym für englisch light amplification by stimulated emission of radiation ‚Licht-Verstärkung durch stimulierte Emission von Strahlung‘) bezeichnet sowohl den physikalischen Effekt als auch das Gerät, mit dem Laserstrahlen erzeugt werden.

Laserstrahlen sind elektromagnetische Wellen. Vom Licht einer zur Beleuchtung verwendeten Lichtquelle, beispielsweise einer Glühlampe, unterscheiden sie sich vor allem durch die sonst unerreichte Kombination von hoher Intensität, oft sehr engem Frequenzbereich (monochromatisches Licht) und damit großer Kohärenzlänge und scharfer Bündelung des Strahls. Auch sind, bei sehr weitem Frequenzbereich, extrem kurze und intensive Strahlpulse mit exakter Wiederholfrequenz möglich.[1]

Laser haben zahlreiche Anwendungsmöglichkeiten in Technik und Forschung sowie im täglichen Leben, vom einfachen Lichtzeiger (z. B. Laserpointer bei Präsentationen) über Entfernungsmessgeräte, Schneid- und Schweißwerkzeuge, Auslesen von optischen Speichermedien wie CDs, DVDs und Blu-ray Discs, Nachrichtenübertragung bis hin zum Laserskalpell und anderen Laserlicht verwendenden Geräten im medizinischen Alltag.

Laser gibt es für Strahlungen in verschiedenen Bereichen des elektromagnetischen Spektrums: von Mikrowellen (Maser) über Infrarot (dann auch IRASER genannt),[2] sichtbares Licht, Ultraviolett bis hin zu Röntgenstrahlung. Die besonderen Eigenschaften der Laserstrahlen entstehen durch ihre Erzeugung in Form einer stimulierten Emission. Der Laser arbeitet wie ein optischer Verstärker, typischerweise in resonanter Rückkopplung. Die dazu erforderliche Energie wird von einem Lasermedium (bspw. Kristall, Gas oder Flüssigkeit) bereitgestellt, in dem aufgrund äußerer Energiezufuhr eine Besetzungsinversion herrscht. Die resonante Rückkopplung entsteht in der Regel dadurch, dass das Lasermedium sich in einem elektromagnetischen Resonator für die Strahlung bestimmter Richtung und Wellenlänge befindet.

Neben den diskreten Energieniveaus atomarer Übergänge gibt es auch Laserbauarten mit kontinuierlichen Energieübergängen, wie den Freie-Elektronen-Laser. Da atomare Energieniveaus kleiner 13,6 eV beschränkt sind, dies entspricht einer Grenze bei der Wellenlänge von 90 nm, benötigen die im Bereich der Röntgenstrahlung mit Wellenlängen kleiner 10 nm arbeitenden Röntgenlaser Bauarten mit kontinuierlichen Energieübergängen.

Verschiedenfarbige Laser
Demonstrationslaser: In der Mitte ist das Leuchten der Gasentladung zu sehen, die das Lasermedium anregt. Der Laserstrahl ist rechts als roter Punkt auf dem weißen Schirm zu erkennen.
  1. Patrick Voss-de Haan: Laser. In: spektrum.de. 1998, abgerufen am 7. November 2019.
  2. Peter-Klaus Budig: Langenscheidt Routledge German Dictionary of Electrical Engineering and Electronics: English-German. Psychology Press, 1997, ISBN 978-0-415-17131-1, S. 368.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search