Unruh-Effekt

Der Unruh-Effekt ist eine Vorhersage der Quantenfeldtheorie: Ein im Vakuum beschleunigter Beobachter sieht anstelle des Vakuums ein Gas von Elementarteilchen, z. B. Photonen, Elektronen oder Positronen. Dies ist eine Folge von lokalen Fluktuationen der Vakuums. Die Temperatur dieses Gases ist proportional zur Beschleunigung.

Dabei bedeutet

Der Effekt wurde 1976 von William Unruh vorhergesagt.

Es besteht ein enger Zusammenhang mit der Hawking-Strahlung Schwarzer Löcher, auf den Unruh bereits in seiner Originalarbeit hinwies: Ein knapp über dem Ereignishorizont eines schwarzen Loches fixierter Beobachter ist einem Schwerefeld ausgesetzt. Nach dem Äquivalenzprinzip entspricht das Schwerefeld einer Beschleunigung, und der Beobachter sieht daher eine Strahlung mit der entsprechenden Unruh-Temperatur. Diese Strahlung erreicht einen weit vom schwarzen Loch entfernt ruhenden Beobachter (nach gravitativer Rotverschiebung) als Hawking-Strahlung.

Die Unruh-Temperatur ist außerordentlich klein: Für eine Beschleunigung, die auf einer Strecke von einem Mikrometer relativistische Geschwindigkeit erreicht, liegt die Temperatur knapp unter dem Niveau des kosmischen Mikrowellenhintergrunds. Um eine Temperaturänderung von einem Grad Celsius (oder einem Kelvin) zu erleben, müsste man um 1020 m/s2 beschleunigen, also in 10−12 s von 0 auf 90 % der Lichtgeschwindigkeit.

Der Unruh-Effekt beschreibt physikalische Vorgänge aus der Sicht eines beschleunigten Beobachters oder Objekts. So kann ein beschleunigter Detektor, der an ein quantisiertes Feld gekoppelt wird, das sich in einem Vakuumzustand bezüglich eines Inertialsystems befindet, die lokalen Fluktuationen des Vakuums registrieren.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search