4-Hydroxynonenal

4-Hydroxynonenal
Skeletal formula of 4-hydroxynonenal ((2E)-2-en)
Names
Preferred IUPAC name
4-Hydroxynon-2-enal[1]
Other names
4-Hydroxy-2-nonenal
Identifiers
3D model (JSmol)
4660015 (2E,4R)
ChEBI
ChEMBL
ChemSpider
MeSH 4-hydroxy-2-nonenal
UNII
  • InChI=1S/C9H16O2/c1-2-3-4-6-9(11)7-5-8-10/h5,7-9,11H,2-4,6H2,1H3/b7-5+ checkY
    Key: JVJFIQYAHPMBBX-FNORWQNLSA-N checkY
  • InChI=1/C9H16O2/c1-2-3-4-6-9(11)7-5-8-10/h5,7-9,11H,2-4,6H2,1H3/b7-5+
    Key: JVJFIQYAHPMBBX-FNORWQNLBE
  • CCCCCC(O)C=CC=O
Properties
C9H16O2
Molar mass 156.225 g·mol−1
Density 0.944 g⋅cm−3
Boiling point 125–127 °C (257–261 °F; 398–400 K) 2 torr
log P 1.897
Acidity (pKa) 13.314
Basicity (pKb) 0.683
Related compounds
Related alkenals
Glucic acid
Malondialdehyde
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

4-Hydroxynonenal, or 4-hydroxy-2E-nonenal or 4-hydroxy-2-nonenal or 4-HNE or HNE, (C9H16O2), is an α,β-unsaturated hydroxyalkenal that is produced by lipid peroxidation in cells. 4-HNE is the primary α,β-unsaturated hydroxyalkenal formed in this process. It is a colorless oil. It is found throughout animal tissues, and in higher quantities during oxidative stress due to the increase in the lipid peroxidation chain reaction, due to the increase in stress events. 4-HNE has been hypothesized to play a key role in cell signal transduction, in a variety of pathways from cell cycle events to cellular adhesion.[2]

Early identification and characterization of 4-hydroxynonenal was reported by Esterbauer, et al.,[3] who also obtained the same compound synthetically.[4] The topic has since been often reviewed,[5] and one source describes the compound as "the most studied LPO (lipid peroxidation) product with pleiotropic capabilities".[6]

  1. ^ "AC1L1C0X – Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 25 March 2005. Identification and Related Records. Retrieved 13 October 2011.
  2. ^ Awasthi, Y. C.; Yang, Y.; Tiwari, N. K.; Patrick, B.; Sharma, A.; Li, J.; Awasthi, S. (2004). "Regulation of 4-hydroxynonenal-mediated signaling by glutathione S-transferases". Free Radical Biology and Medicine. 37 (5): 607–619. doi:10.1016/j.freeradbiomed.2004.05.033. PMID 15288119.
  3. ^ Benedetti, Angelo; Comporti, Mario; Esterbauer, Hermann (1980). "Identification of 4-Hydroxynonenal as a Cytotoxic Product Originating from the Peroxidation of Liver Microsomal Lipids". Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism. 620 (2): 281–296. doi:10.1016/0005-2760(80)90209-X. PMID 6254573.
  4. ^ Esterbauer, H.; Weger, W. (1967). "Über die Wirkungen von Aldehyden auf gesunde und maligne Zellen, 3. Mitt.: Synthese von homologen 4-Hydroxy-2-alkenalen, II". Monatshefte für Chemie. 98 (5): 1994–2000. doi:10.1007/BF01167162.
  5. ^ Ayala, Antonio; Muñoz, Mario F.; Argüelles, Sandro (2014). "Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal". Oxidative Medicine and Cellular Longevity. 2014: 1–31. doi:10.1155/2014/360438. PMC 4066722. PMID 24999379.
  6. ^ Milkovic L, Zarkovic N, Marusic Z, Zarkovic K, Jaganjac M (March 29, 2023). "The 4-Hydroxynonel-Protein Adducts and Their Biological Relevance". Antioxidants (Review). 12 (4): 856. doi:10.3390/antiox12040856. PMC 10135105. PMID 37107229 – via MDPI.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search