Accelerator Neutrino Neutron Interaction Experiment

Logo for the Accelerator Neutrino Neutron Interaction Experiment

The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a proposed water Cherenkov detector experiment designed to examine the nature of neutrino interactions. This experiment will study phenomena like proton decay, and neutrino oscillations, by analyzing neutrino interactions in gadolinium-loaded water and measuring their neutron yield. Neutron Tagging plays an important role in background rejection from atmospheric neutrinos.[1] By implementing early prototypes of LAPPDs (Large Area Picosecond Photodetector), high precision timing is possible. The suggested location for ANNIE is the SciBooNE hall on the Booster Neutrino Beam associated with the MiniBooNE experiment. The neutrino beam originates in Fermilab where The Booster delivers 8 GeV protons to a beryllium target producing secondary pions and kaons. These secondary mesons decay to produce a neutrino beam with an average energy of around 800 MeV.[2] ANNIE will begin installation in the summer of 2015.[3] Phase I of ANNIE, mapping the neutron background, completed in 2017. The detector is being upgraded for full science operation (so-called Phase II) which is expected to begin late 2018.[4]

  1. ^ Super-Kamiokande Collaboration (5 Nov 2008). "First Study of Neutron Tagging with a Water Cherenkov Detector". Astroparticle Physics. 31 (4): 320–328. arXiv:0811.0735. Bibcode:2009APh....31..320S. doi:10.1016/j.astropartphys.2009.03.002. S2CID 12773599.
  2. ^ MiniBooNE Collaboration (4 Jun 2008). "The Neutrino Flux prediction at MiniBooNE". Physical Review D. 79 (7): 072002. arXiv:0806.1449. Bibcode:2009PhRvD..79g2002A. doi:10.1103/PhysRevD.79.072002.
  3. ^ ANNIE Collaboration (7 April 2015). "Letter of Intent: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)". arXiv:1504.01480 [physics.ins-det].
  4. ^ "ANNIE | Accelerator Neutrino Neutron Interaction Experiment".

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search