Allotropy

Diamond and graphite are two allotropes of carbon: pure forms of the same element that differ in crystalline structure.

Allotropy or allotropism (from Ancient Greek ἄλλος (allos) 'other', and τρόπος (tropos) 'manner, form') is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the atoms of the element are bonded together in different manners.[1] For example, the allotropes of carbon include diamond (the carbon atoms are bonded together to form a cubic lattice of tetrahedra), graphite (the carbon atoms are bonded together in sheets of a hexagonal lattice), graphene (single sheets of graphite), and fullerenes (the carbon atoms are bonded together in spherical, tubular, or ellipsoidal formations).

The term allotropy is used for elements only, not for compounds. The more general term, used for any compound, is polymorphism, although its use is usually restricted to solid materials such as crystals. Allotropy refers only to different forms of an element within the same physical phase (the state of matter, such as a solid, liquid or gas). The differences between these states of matter would not alone constitute examples of allotropy. Allotropes of chemical elements are frequently referred to as polymorphs or as phases of the element.

For some elements, allotropes have different molecular formulae or different crystalline structures, as well as a difference in physical phase; for example, two allotropes of oxygen (dioxygen, O2, and ozone, O3) can both exist in the solid, liquid and gaseous states. Other elements do not maintain distinct allotropes in different physical phases; for example, phosphorus has numerous solid allotropes, which all revert to the same P4 form when melted to the liquid state.

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Allotrope". doi:10.1351/goldbook.A00243

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search