Altitude training

Altitude training in the Swiss Olympic Training Base in the Alps (elevation 1,856 m or 6,089 ft) in St. Moritz.

Altitude training is the practice by some endurance athletes of training for several weeks at high altitude, preferably over 2,400 metres (8,000 ft) above sea level, though more commonly at intermediate altitudes due to the shortage of suitable high-altitude locations. At intermediate altitudes, the air still contains approximately 20.9% oxygen, but the barometric pressure and thus the partial pressure of oxygen is reduced.[1][2]

Depending on the protocols used, the body may acclimate to the relative lack of oxygen in one or more ways such as increasing the mass of red blood cells and hemoglobin, or altering muscle metabolism.[3][4][5][6] Proponents claim that when such athletes travel to competitions at lower altitudes they will still have a higher concentration of red blood cells for 10–14 days, and this gives them a competitive advantage. Some athletes live permanently at high altitude, only returning to sea level to compete, but their training may suffer due to less available oxygen for workouts.

Altitude training can be simulated through use of an altitude simulation tent, altitude simulation room, or mask-based hypoxicator system where the barometric pressure is kept the same, but the oxygen content is reduced which also reduces the partial pressure of oxygen. Hypoventilation training, which consists of reducing the breathing frequency while exercising, can also mimic altitude training by significantly decreasing blood and muscle oxygenation.[7]

  1. ^ West, JB (October 1996). "Prediction of barometric pressures at high altitude with the use of model atmospheres". Journal of Applied Physiology. 81 (4): 1850–4. doi:10.1152/jappl.1996.81.4.1850. PMID 8904608.
  2. ^ "Online high-altitude oxygen and pressure calculator". Altitude.org. Archived from the original on 2010-02-01. Retrieved 2010-07-03.
  3. ^ Formenti, F; Constantin-Teodosiu, D; Emmanuel, Y; Cheeseman, J; et al. (June 2010). "Regulation of human metabolism by hypoxia-inducible factor". Proceedings of the National Academy of Sciences of the USA. 107 (28): 12722–12727. Bibcode:2010PNAS..10712722F. doi:10.1073/pnas.1002339107. PMC 2906567. PMID 20616028.
  4. ^ Wehrlin, JP; Zuest, P; Hallén, J; Marti, B (June 2006). "Live high—train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes". J. Appl. Physiol. 100 (6): 1938–45. doi:10.1152/japplphysiol.01284.2005. PMID 16497842. S2CID 2536000.
  5. ^ Gore, CJ; Clark, SA; Saunders, PU (September 2007). "Nonhematological mechanisms of improved sea-level performance after hypoxic exposure". Med. Sci. Sports Exerc. 39 (9): 1600–9. doi:10.1249/mss.0b013e3180de49d3. PMID 17805094.
  6. ^ Muza, SR; Fulco, CS; Cymerman, A (2004). "Altitude Acclimatization Guide". US Army Research Inst. Of Environmental Medicine Thermal and Mountain Medicine Division Technical Report (USARIEM–TN–04–05). Archived from the original on 2009-04-23. Retrieved 2009-03-05.{{cite journal}}: CS1 maint: unfit URL (link)
  7. ^ Xavier Woorons, "Hypoventilation training, push your limits!", Arpeh, 2014, 176 p (ISBN 978-2-9546040-1-5)

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search