Antifragility

Antifragility is a property of systems in which they increase in capability to thrive as a result of stressors, shocks, volatility, noise, mistakes, faults, attacks, or failures. The concept was developed by Nassim Nicholas Taleb in his book, Antifragile, and in technical papers.[1][2] As Taleb explains in his book, antifragility is fundamentally different from the concepts of resiliency (i.e. the ability to recover from failure) and robustness (that is, the ability to resist failure). The concept has been applied in risk analysis,[3][4] physics,[5] molecular biology,[6][7] transportation planning,[8][9] engineering,[10][11][12] aerospace (NASA),[13] and computer science.[11][14][15][16]

Taleb defines it as follows in a letter to Nature responding to an earlier review of his book in that journal:

Simply, antifragility is defined as a convex response to a stressor or source of harm (for some range of variation), leading to a positive sensitivity to increase in volatility (or variability, stress, dispersion of outcomes, or uncertainty, what is grouped under the designation "disorder cluster"). Likewise fragility is defined as a concave sensitivity to stressors, leading to a negative sensitivity to increase in volatility. The relation between fragility, convexity, and sensitivity to disorder is mathematical, obtained by theorem, not derived from empirical data mining or some historical narrative. It is a priori.

— Taleb, N. N., Philosophy: 'Antifragility' as a mathematical idea. Nature, 2013 Feb 28; 494(7438), 430-430
  1. ^ Nassim Nicholas Taleb (2012). Antifragile: Things That Gain from Disorder. Random House. p. 430. ISBN 9781400067824. antifragile Mistaking the source of important or even necessary.,
  2. ^ Taleb, N.N.; Douady, R. (2013). "Mathematical definition, mapping, and detection of (anti) fragility". Quantitative Finance. 13 (11): 1677–1689. arXiv:1208.1189. doi:10.1080/14697688.2013.800219. S2CID 219716527.
  3. ^ Aven, T (2014). "The Concept of Antifragility and its Implications for the Practice of Risk Analysis". Risk Analysis. 35 (3): 476–483. doi:10.1111/risa.12279. PMID 25263809. S2CID 5537979.
  4. ^ Derbyshire, J.; Wright, G. (2014). "Preparing for the future: Development of an 'antifragile' methodology that complements scenario planning by omitting causation" (PDF). Technological Forecasting and Social Change. 82: 215–225. doi:10.1016/j.techfore.2013.07.001.
  5. ^ Naji, A., Ghodrat, M., Komaie-Moghaddam, H., & Podgornik, R. (2014). Asymmetric Coulomb fluids at randomly charged dielectric interfaces: Anti-fragility, overcharging and charge inversion. J. Chem. Phys. 141 174704.
  6. ^ Danchin, A.; Binder, P. M.; Noria, S. (2011). "Antifragility and tinkering in biology (and in business) flexibility provides an efficient epigenetic way to manage risk". Genes. 2 (4): 998–1016. doi:10.3390/genes2040998. PMC 3927596. PMID 24710302.
  7. ^ Grube, Martin; Muggia, Lucia; Gostinčar, Cene (2013). "Niches and Adaptations of Polyextremotolerant Black Fungi". Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 27. pp. 551–566. doi:10.1007/978-94-007-6488-0_25. ISBN 978-94-007-6487-3.
  8. ^ Levin, J. S., Brodfuehrer, S. P., & Kroshl, W. M. (2014, March). Detecting antifragile decisions and models lessons from a conceptual analysis model of Service Life Extension of aging vehicles. In Systems Conference (SysCon), 2014 8th Annual IEEE (pp. 285-292). IEEE.
  9. ^ Isted, R. (2014, August). The use of antifragility heuristics in transport planning. In Australian Institute of Traffic Planning and Management (AITPM) National Conference, 2014, Adelaide, South Australia, Australia (No. 3).
  10. ^ Verhulsta, E (2014). "Applying Systems and Safety Engineering Principles for Antifragility" (PDF). Procedia Computer Science. 32: 842–849. doi:10.1016/j.procs.2014.05.500.
  11. ^ a b Jones, K. H. (2014). "Engineering Antifragile Systems: A Change In Design Philosophy". Procedia Computer Science. 32: 870–875. doi:10.1016/j.procs.2014.05.504. hdl:2060/20140010075.
  12. ^ Lichtman, M.; Vondal, M. T.; Clancy, T. C.; Reed, J. H. (2016-01-01). "Antifragile Communications". IEEE Systems Journal. PP (99): 659–670. Bibcode:2018ISysJ..12..659L. doi:10.1109/JSYST.2016.2517164. hdl:10919/72267. ISSN 1932-8184. S2CID 4339184.
  13. ^ Jones, Kennie H. "Antifragile Systems: An Enabler for System Engineering of Elegant Systems." (2015), NASA, [1]
  14. ^ Ramirez, C. A., & Itoh, M. (2014, September). An initial approach towards the implementation of human error identification services for antifragile systems. In SICE Annual Conference (SICE), 2014 Proceedings of the (pp. 2031-2036). IEEE.
  15. ^ Abid, A.; Khemakhem, M. T.; Marzouk, S.; Jemaa, M. B.; Monteil, T.; Drira, K. (2014). "Toward Antifragile Cloud Computing Infrastructures". Procedia Computer Science. 32: 850–855. doi:10.1016/j.procs.2014.05.501.
  16. ^ Guang, L.; Nigussie, E.; Plosila, J.; Tenhunen, H. (2014). "Positioning Antifragility for Clouds on Public Infrastructures". Procedia Computer Science. 32: 856–861. doi:10.1016/j.procs.2014.05.502.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search