Automatic test pattern generation

ATPG (acronym for both automatic test pattern generation and automatic test pattern generator) is an electronic design automation method or technology used to find an input (or test) sequence that, when applied to a digital circuit, enables automatic test equipment to distinguish between the correct circuit behavior and the faulty circuit behavior caused by defects. The generated patterns are used to test semiconductor devices after manufacture, or to assist with determining the cause of failure (failure analysis[1]). The effectiveness of ATPG is measured by the number of modeled defects, or fault models, detectable and by the number of generated patterns. These metrics generally indicate test quality (higher with more fault detections) and test application time (higher with more patterns). ATPG efficiency is another important consideration that is influenced by the fault model under consideration, the type of circuit under test (full scan, synchronous sequential, or asynchronous sequential), the level of abstraction used to represent the circuit under test (gate, register-transfer, switch), and the required test quality.

  1. ^ Crowell, G; Press, R. "Using Scan Based Techniques for Fault Isolation in Logic Devices". Microelectronics Failure Analysis. pp. 132–8.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search