Cascade (CRISPR-associated complex for antiviral defense) | |||||||
---|---|---|---|---|---|---|---|
![]() CRISPR Cascade protein (cyan) bound to CRISPR RNA (green) and phage DNA (red)[1] | |||||||
Identifiers | |||||||
Organism | |||||||
Symbol | CRISPR | ||||||
Entrez | 947229 | ||||||
PDB | 4QYZ | ||||||
RefSeq (Prot) | NP_417241.1 | ||||||
UniProt | P38036 | ||||||
|
Part of a series on |
CRISPR |
---|
Genome editing - CRISPR gene editing |
Variants |
Anti-CRISPR - CIRTS - CRISPeY CRISPR-Cas10 - CRISPR-Cas13 - CRISPR-BEST CRISPR-Disp - CRISPR-Gold - CRISPRa - CRISPRi Easi-CRISPR - FACE |
Enzyme |
Cas9 - FokI - EcoRI - PstI - SmaI HaeIII - Cas12a (Cpf1) - xCas9 |
Applications |
CAMERA - ICE - Genética dirigida |
Other genome editing methods |
Prime editing - Pro-AG - RESCUE - TALEN - ZFN - LEAPER |
Part of a series on |
Genetic engineering |
---|
![]() |
Genetically modified organisms |
History and regulation |
Process |
Applications |
Controversies |
CRISPR (/ˈkrɪspər/) (an acronym for clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea.[2] Each sequence within an individual prokaryotic CRISPR is derived from a DNA fragment of a bacteriophage that had previously infected the prokaryote or one of its ancestors.[3][4] These sequences are used to detect and destroy DNA from similar bacteriophages during subsequent infections. Hence these sequences play a key role in the antiviral (i.e. anti-phage) defense system of prokaryotes and provide a form of heritable,[3] acquired immunity.[2][5][6][7] CRISPR is found in approximately 50% of sequenced bacterial genomes and nearly 90% of sequenced archaea.[3]
Cas9 (or "CRISPR-associated protein 9") is an enzyme that uses CRISPR sequences as a guide to recognize and open up specific strands of DNA that are complementary to the CRISPR sequence. Cas9 enzymes together with CRISPR sequences form the basis of a technology known as CRISPR-Cas9 that can be used to edit genes within living organisms.[9][10] This editing process has a wide variety of applications including basic biological research, development of biotechnological products, and treatment of diseases.[11][12] The development of the CRISPR-Cas9 genome editing technique was recognized by the Nobel Prize in Chemistry in 2020 awarded to Emmanuelle Charpentier and Jennifer Doudna.[13][14]
Hsu2014
was invoked but never defined (see the help page).
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search