Chemical impurity

In chemistry and materials science, impurities are chemical substances inside a confined amount of liquid, gas, or solid. They differ from the chemical composition of the material or compound.[1] Firstly, a pure chemical should appear in at least one chemical phase and can also be characterized by its phase diagram. Secondly, a pure chemical should prove to be homogeneous (i.e., a uniform substance that has the same composition throughout the material[2]). The perfect pure chemical will pass all attempts to separate and purify it further. Thirdly, and here we focus on the common chemical definition, it should not contain any trace of any other kind of chemical species. In reality, there are no absolutely 100% pure chemical compounds, as there is always some small amount of contamination.

The levels of impurities in a material are generally defined in relative terms. Standards have been established by various organizations that attempt to define the permitted levels of various impurities in a manufactured product. Strictly speaking, a material's level of purity can only be stated as being more or less pure than some other material.

Impurities are either naturally occurring or added during synthesis of a chemical or commercial product. During production, impurities may be purposely or accidentally added to the substance. The removal of unwanted impurities may require the use of separation or purification techniques such as distillation or zone refining. In other cases, impurities might be added to acquire certain properties of a material such as the color in gemstones or conductivity in semiconductors. Impurities may also affect crystallization as they can act as nucleation sites that start crystal growth. Impurities can also play a role in nucleation of other phase transitions in the form of defects.   

  1. ^ "Definition of IMPURITY". www.merriam-webster.com. 2024-03-24. Retrieved 2024-04-01.
  2. ^ "Definition of HOMOGENEOUS". www.merriam-webster.com. 2024-03-10. Retrieved 2024-03-27.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search