Chirp compression

The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power. Furthermore, the process offers good range resolution because the half-power beam width of the compressed pulse is consistent with the system bandwidth.

The basics of the method for radar applications were developed in the late 1940s and early 1950s,[1][2][3] but it was not until 1960, following declassification of the subject matter, that a detailed article on the topic appeared the public domain.[4] Thereafter, the number of published articles grew quickly, as demonstrated by the comprehensive selection of papers to be found in a compilation by Barton.[5]

Briefly, the basic pulse compression properties can be related as follows. For a chirp waveform that sweeps over a frequency range F1 to F2 in a time period T, the nominal bandwidth of the pulse is B, where B = F2 – F1, and the pulse has a time-bandwidth product of T×B. Following pulse compression, a narrow pulse of duration τ is obtained, where τ ≈ 1/B, together with a peak voltage amplification of T×B.

  1. ^ Dicke R. H.,"Object Detection System", U.S. Patent 2,624,876, submitted Sept. 1945
  2. ^ Darlington S.,"Pulse Transmission", U.S. Patent 2,678,997, submitted Sept. 1945
  3. ^ Sproule D. O. and Hughes A. J., "Improvements in and Relating to System Operation by Means of Wave Trains", U.K. Patent 604,429, submitted June 1945
  4. ^ Klauder J. R., Price A. C., Darlington S. and Albersheim W. J., "The Theory and Design of Chirp Radars", BSTJ Vol. 39, July 1960, pp. 745–808
  5. ^ Barton D. K. (ed), "Radars, Volume 3, Pulse Compression", Artech House 1975, 1978

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search