In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers,[1] effective numbers,[2] computable reals,[3] or recursive reals.[4] The concept of a computable real number was introduced by Émile Borel in 1912, using the intuitive notion of computability available at the time.[5]
Equivalent definitions can be given using μ-recursive functions, Turing machines, or λ-calculus as the formal representation of algorithms. The computable numbers form a real closed field and can be used in the place of real numbers for many, but not all, mathematical purposes.[citation needed]
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search