Conjugate variables

Conjugate variables are pairs of variables mathematically defined in such a way that they become Fourier transform duals,[1][2] or more generally are related through Pontryagin duality. The duality relations lead naturally to an uncertainty relation—in physics called the Heisenberg uncertainty principle—between them. In mathematical terms, conjugate variables are part of a symplectic basis, and the uncertainty relation corresponds to the symplectic form. Also, conjugate variables are related by Noether's theorem, which states that if the laws of physics are invariant with respect to a change in one of the conjugate variables, then the other conjugate variable will not change with time (i.e. it will be conserved).

  1. ^ "Heisenberg – Quantum Mechanics, 1925–1927: The Uncertainty Relations". Archived from the original on 2015-12-22. Retrieved 2010-08-07.
  2. ^ Hjalmars, S. (1962). "Some remarks on time and energy as conjugate variables". Il Nuovo Cimento. 25 (2): 355–364. Bibcode:1962NCim...25..355H. doi:10.1007/BF02731451. S2CID 120008951.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search