Crystallographic restriction theorem

The crystallographic restriction theorem in its basic form was based on the observation that the rotational symmetries of a crystal are usually limited to 2-fold, 3-fold, 4-fold, and 6-fold. However, quasicrystals can occur with other diffraction pattern symmetries, such as 5-fold; these were not discovered until 1982 by Dan Shechtman.[1]

Crystals are modeled as discrete lattices, generated by a list of independent finite translations (Coxeter 1989). Because discreteness requires that the spacings between lattice points have a lower bound, the group of rotational symmetries of the lattice at any point must be a finite group (alternatively, the point is the only system allowing for infinite rotational symmetry). The strength of the theorem is that not all finite groups are compatible with a discrete lattice; in any dimension, we will have only a finite number of compatible groups.

  1. ^ Shechtman et al (1982)

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search