Cyclic quadrilateral

Examples of cyclic quadrilaterals

In geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral (four-sided polygon) whose vertices all lie on a single circle, making the sides chords of the circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

The word cyclic is from the Ancient Greek κύκλος (kuklos), which means "circle" or "wheel".

All triangles have a circumcircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be cyclic is a non-square rhombus. The section characterizations below states what necessary and sufficient conditions a quadrilateral must satisfy to have a circumcircle.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search