Cytokine storm

Cytokine storm
Other nameshypercytokinemia
SpecialtyImmunology

A cytokine storm, also called hypercytokinemia, is a pathological reaction in humans and other animals in which the innate immune system causes an uncontrolled and excessive release of pro-inflammatory signaling molecules called cytokines. Cytokines are a normal part of the body's immune response to infection, but their sudden release in large quantities may cause multisystem organ failure and death.[1]

Cytokine storms may be caused by infectious or non-infectious etiologies, especially viral respiratory infections such as H1N1 influenza, H5N1 influenza, SARS-CoV-1,[2][3] SARS-CoV-2, Influenza B, and parainfluenza virus. Other causative agents include the Epstein-Barr virus, cytomegalovirus, group A streptococcus, and non-infectious conditions such as graft-versus-host disease.[4] The viruses can invade lung epithelial cells and alveolar macrophages to produce viral nucleic acid, which stimulates the infected cells to release cytokines and chemokines, activating macrophages, dendritic cells, and others.[5]

Cytokine storm syndrome is a diverse set of conditions that can result in a cytokine storm. Cytokine storm syndromes include familial hemophagocytic lymphohistiocytosis, Epstein-Barr virus–associated hemophagocytic lymphohistiocytosis, systemic or non-systemic juvenile idiopathic arthritis–associated macrophage activation syndrome, NLRC4 macrophage activation syndrome, cytokine release syndrome and sepsis.[6]

  1. ^ Farsalinos, Konstantinos; Barbouni, Anastasia; Niaura, Raymond (2020). "Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: Could nicotine be a therapeutic option?". Internal and Emergency Medicine. 15 (5): 845–852. doi:10.1007/s11739-020-02355-7. PMC 7210099. PMID 32385628.
  2. ^ Wong, Jonathan P.; Viswanathan, Satya; Wang, Ming; Sun, Lun-Quan; Clark, Graeme C.; D'Elia, Riccardo V. (February 2017). "Current and future developments in the treatment of virus-induced hypercytokinemia". Future Medicinal Chemistry. 9 (2): 169–178. doi:10.4155/fmc-2016-0181. ISSN 1756-8927. PMC 7079716. PMID 28128003.
  3. ^ Liu, Qiang; Zhou, Yuan-hong; Yang, Zhan-qiu (January 2016). "The cytokine storm of severe influenza and development of immunomodulatory therapy". Cellular & Molecular Immunology. 13 (1): 3–10. doi:10.1038/cmi.2015.74. PMC 4711683. PMID 26189369.
  4. ^ Tisoncik, Jennifer R.; Korth, Marcus J.; Simmons, Cameron P.; Farrar, Jeremy; Martin, Thomas R.; Katze, Michael G. (2012). "Into the Eye of the Cytokine Storm". Microbiology and Molecular Biology Reviews. 76 (1): 16–32. doi:10.1128/MMBR.05015-11. ISSN 1092-2172. PMC 3294426. PMID 22390970.
  5. ^ Song, Peipei; Li, Wei; Xie, Jianqin; Hou, Yanlong; You, Chongge (October 2020). "Cytokine storm induced by SARS-CoV-2". Clinica Chimica Acta; International Journal of Clinical Chemistry. 509: 280–287. doi:10.1016/j.cca.2020.06.017. ISSN 0009-8981. PMC 7283076. PMID 32531256.
  6. ^ Behrens, Edward M.; Koretzky, Gary A. (2017). "Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era". Arthritis & Rheumatology. 69 (6): 1135–1143. doi:10.1002/art.40071. ISSN 2326-5205. PMID 28217930.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search