In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.
The algorithm is numerically stable[1] when compared to direct evaluation of polynomials. The computational complexity of this algorithm is , where d is the number of dimensions, and n is the number of control points. There exist faster alternatives.[2][3]
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search