In algebraic geometry, given a morphism of schemes , the diagonal morphism
is a morphism determined by the universal property of the fiber product of p and p applied to the identity and the identity .
It is a special case of a graph morphism: given a morphism over S, the graph morphism of it is induced by and the identity . The diagonal embedding is the graph morphism of .
By definition, X is a separated scheme over S ( is a separated morphism) if the diagonal morphism is a closed immersion. Also, a morphism locally of finite presentation is an unramified morphism if and only if the diagonal embedding is an open immersion.
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search