![]() | Review waiting, please be patient.
This may take a week or more, since drafts are reviewed in no specific order. There are 224 pending submissions waiting for review.
Where to get help
How to improve a draft
You can also browse Wikipedia:Featured articles and Wikipedia:Good articles to find examples of Wikipedia's best writing on topics similar to your proposed article. Improving your odds of a speedy review To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Editor resources
Reviewer tools
|
Submission declined on 4 November 2023 by Stuartyeates (talk).
Where to get help
How to improve a draft
You can also browse Wikipedia:Featured articles and Wikipedia:Good articles to find examples of Wikipedia's best writing on topics similar to your proposed article. Improving your odds of a speedy review To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography, Astronomy, and Women scientists tags. Editor resources
This draft has been resubmitted and is currently awaiting re-review. | ![]() |
Thrust coefficient or (sometimes ) is a dimensionless number that measures the performance of a nozzle, most commonly in a rocket engine, independent of combustion performance. It is often used to compare the performance of different nozzle geometries. After combining it with characteristic velocity , then an effective exhaust velocity and a specific impulse can be found to characterize the overall efficiency of a rocket engine design.[1]
The thrust coefficient characterizes the supersonic flow in the expansion section downstream of the nozzle throat, in contrast to characteristic velocity which characterizes the subsonic flow in the combustion chamber and contraction section upstream of the throat.[2]
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search
- in-depth (not just passing mentions about the subject)
- reliable
- secondary
- independent of the subject
Make sure you add references that meet these criteria before resubmitting. Learn about mistakes to avoid when addressing this issue. If no additional references exist, the subject is not suitable for Wikipedia.