Edge-localized mode

An edge-localized mode (ELM) is a plasma instability occurring in the edge region of a tokamak plasma due to periodic relaxations of the edge transport barrier in high-confinement mode. Each ELM burst is associated with expulsion of particles and energy from the confined plasma into the scrape-off layer. This phenomenon was first observed in the ASDEX tokamak in 1981.[1] Diamagnetic effects in the model equations expand the size of the parameter space in which solutions of repeated sawteeth can be recovered compared to a resistive MHD model.[2] An ELM can expel up to 20 percent of the reactor's energy.[3]

  1. ^ F., Wagner; A.R., Field; G., Fussmann; J.V., Hofmann; M.E., Manso; O., Vollmer; José, Matias (1990). "Recent results of H-mode studies on ASDEX". 13th International Conference on Plasma Physics and Controlled Nuclear Fusion: 277–290. hdl:10198/9098.
  2. ^ Halpern, F D; Leblond, D; Lütjens, H; Luciani, J-F (2010-11-30). "Oscillation regimes of the internal kink mode in tokamak plasmas". Plasma Physics and Controlled Fusion. 53 (1): 015011. doi:10.1088/0741-3335/53/1/015011. ISSN 0741-3335. S2CID 122868427.
  3. ^ Choi, Charles Q. (20 October 2022). "Controlled chaos may be the key to unlimited clean energy". Inverse. Retrieved 2022-10-26.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search