Electrothermal-chemical technology

Electrothermal-chemical (ETC) technology is an attempt to increase accuracy and muzzle energy of future tank, artillery, and close-in weapon system[1] guns by improving the predictability and rate of expansion of propellants inside the barrel.

An electrothermal-chemical gun uses a plasma cartridge to ignite and control the ammunition's propellant, using electrical energy to trigger the process. ETC increases the performance of conventional solid propellants, reduces the effect of temperature on propellant expansion and allows for more advanced, higher density propellants to be used.

The technology has been under development since the mid-1980s and in 1993 was actively being researched in the United States by the Army Research Laboratory, Sandia National Laboratories and defense industry contractors, including FMC Corporation, General Dynamics Land Systems, Olin Ordnance, and Soreq Nuclear Research Center.[2] It is possible that electrothermal-chemical gun propulsion will be an integral part of US Army's future combat system and those of other countries such as Germany and the United Kingdom. Electrothermal-chemical technology is part of a broad research and development program that encompasses all electric gun technology, such as railguns and coil guns.

  1. ^ Norman Friedman; David K Brown; Eric Grove; Stuart Slade; David Steigman (1993). Navies in the Nuclear Age: Warships since 1945. Naval Institute Press. p. 163. ISBN 1-55750-613-2.
  2. ^ Taulbee, Steve (1993). ARL Ballistics Research, U.S. Army Research Laboratory, p. 5.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search